

Drupalcamp Vienna 2009

Development workflow and deployment at

Klaus Purer
2009-11-28

http://klausi.fsinf.at

http://klausi.fsinf.at/

Who am I?

 Student at the Vienna University of
Technology
 Software Engineering & Internet Computing

 Software developer & server admin at
 Google Summer of Code Student 2009

 Work for the Drupal Rules module

 Passionate free & open source
user/developer

Who are you?

 You are Drupal developers
 You want to know how others do their daily

Drupal work
 You want to organize development and

deployment for your use case
 You have basic knowledge about version

control, databases, server administration

Who is Absolventen.at?

 Job exchange platform in Austria
 For school and university graduates
 Drupal based
 Highly distributed development team
 ca. 7 developers
 Incrementally evolving the code base

Absolventen.at software stack

 + custom Drupal
themes

 + official Drupal
modules

 + custom Drupal
modules

 + custom server
scripts

Goals in development

 Preserve all code changes ever made
 Rollback to any previous state possible
 Seperate new features from bug fixes
 Work in parallel on different parts
 Avoid conflicts by editing the same code
 Show features and tests to others

Version control with Subversion

 Solves the code history problem
 Allows working in parallel
 Does not help separating bugs from features
 Solution: devel branch and stable branch

 Requires Merging between them (not funny in
Subversion < 1.5)

 Problem: a commit must not break the code
 Solution: big new features in feature branches
 Does not avoid conflicts for you

Project management

 Solves the edit conflict
 We run an internal project management site

(Drupal-based)
 Includes an issue/bug tracker with developer

assignments
 Each module/functionality is assigned to one

developer (maintains updates, ...)
 Organizes the overall development process in

milestones

Documentation

 Implementation needs documentation
references to spread the knowledge

 Often a view pointers suffice to explain
functionality

 Custom patches need documentation
 Development & Test guidelines
 Design guidelines
 OpenAtrium offers a good documentation and

collaboration basis

Communication

 Project web with issues, comments, blogs,
docu pages etc.

 Notifications via Email and RSS Feeds
 Jabber/XMPP interaction (+ group chat)
 Identi.ca private status updates (twitter-like)
 Commit-Log with useful commit messages
 Face to face meetings

Development work flow

 Similar to Scrum
 Time is sliced into one week sprints
 Features and minor fixes are committed into the

devel branch
 More critical bug fixes are committed into the

stable branch
 Production site is updated immediately

 Every Monday development is merged and
populated to the production site

Bloody Monday

 Production database is dumped and provided
to the developers

 Subversion branches get merged
 Conflicts are reported to the developers

 Simpletests get executed and verified
 Stable branch is freshly cloned from the devel

branch
 Production site is updated
 Caches are cleared

Bloody Monday (2)

 Watchdog logs are examined
 File not found errors – are there any dead links on

your site?
 PHP errors – did you check that array for null

values?

 Additional DB changes are deployed
 Merge-log that summarizes all abnormalities as

a report

Goals in deployment

 Separate development environment from
production environment
 Development server vs. production server

 Provide a testing (staging) site that is an exact
production clone

 Provide a development site for each developer
 Production site updates must be as fast as

possible
 Production site updates must be consistent

Deployed sites

 Productive: the live site
 Testing: clone of productive, experiments

allowed
 Devel: reflects current devel branch code
 Devel X: dev site of developer X
 Devel Y: dev site of developer Y
 Devel Z: dev site of developer Z
 ...

Deployment with Subversion

 Drupal core + modules + settings are checked
into the repository

 All changes are committed to the repository
and then checked out to production use

 Never ever edit files directly in your production
site!
 Inconsistencies can cause severe developer

headache

 Testing/Development sites are able to checkout
an exact copy

Deploying database changes

 Manually: do the changes on a testing site, do it
again on the production site. Tedious :-(

 Export: do the changes once and import them
on the production site. Must be module-
supported (e.g. Views, Rules, …)

 Code: implement default hooks and commit
them. Needs a developer.

 Features: Similar to export, but allows you to
commit Features-generated modules.

Test driven development

 … we don't do that, actually
 Test supported development
 All mission critical features are covered by

Simpletests
 Mostly black box tests that execute tasks on

testing (!) sites and report any failures
 Developers are able to verify that their code

does not break anything existing
 Not all bugs are found via Simpletest, but many

are avoided from the beginning

Drush

 Drush = Drupal shell
 Executes Drupal tasks from the command line
 Automatically detects the Drupal site from the

directory you execute it in
 We use it to

 Run the Simpletests
 Add/Upgrade/Remove/Enable modules
 Run cron

Mysqldump speedup

 Slow:
mysqldump $DB_NAME > dump.sql

 Faster (30%):
mysqldump –-tab $TMPDIR $DB_NAME

 Import:

cat $TMPDIR/*.sql | mysql $DB_NAME

mysqlimport $DB_NAME $TMPDIR/*.txt

Subversion drawbacks

 Subversion is not perfect for merging
 Subversion is centralized, a feature must be

working before you can commit it
 Subversion wants to do CVS right
 Linus Torvalds: “There is no way to do CVS

right”
 “If you like using cvs, you should be in some

kind of mental institution or somewhere else.”

Version control future

 Distributed version control systems
 Merging is an integral part of the design
 A commit is local
 Changes are pushed to and pulled from

arbitrary locations
 Versioned development in an independent

manner

Version control future (2)

 And remember kids:

Die CVS, die!

 The good guys:

CVS

Bazaar

Deployment Future

 Drush – Drupal command line scripting
 Aegir hosting system

 Easy deployment of a new site with a view clicks
 Management of many sites within a Drupal

installation

 Drush Make – resolves dependencies
 Features module

 Bundle your CCK, Views, Rules etc. settings and
save them as “features”

Discussion

 Questions
 Answers
 Comments
 Feedback

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

