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Who am I?

 Student at the Vienna University of 
Technology
 Software Engineering & Internet Computing

 Software developer & server admin at 
 Google Summer of Code Student 2009

 Work for the Drupal Rules module

 Passionate free & open source 
user/developer



  

Who are you?

 You are Drupal developers
 You want to know how others do their daily 

Drupal work
 You want to organize development and 

deployment for your use case
 You have basic knowledge about version 

control, databases, server administration



  

Who is Absolventen.at?

 Job exchange platform in Austria
 For school and university graduates
 Drupal based
 Highly distributed development team
 ca. 7 developers
 Incrementally evolving the code base



  

Absolventen.at software stack

 + custom Drupal 
themes

 + official Drupal 
modules

 + custom Drupal 
modules

 + custom server 
scripts



  

Goals in development

 Preserve all code changes ever made
 Rollback to any previous state possible
 Seperate new features from bug fixes
 Work in parallel on different parts
 Avoid conflicts by editing the same code
 Show features and tests to others



  

Version control with Subversion

 Solves the code history problem
 Allows working in parallel
 Does not help separating bugs from features
 Solution: devel branch and stable branch

 Requires Merging between them (not funny in 
Subversion < 1.5)

 Problem: a commit must not break the code
 Solution: big new features in feature branches
 Does not avoid conflicts for you



  

Project management

 Solves the edit conflict
 We run an internal project management site 

(Drupal-based)
 Includes an issue/bug tracker with developer 

assignments
 Each module/functionality is assigned to one 

developer (maintains updates, ...)
 Organizes the overall development process in 

milestones



  

Documentation

 Implementation needs documentation 
references to spread the knowledge

 Often a view pointers suffice to explain 
functionality

 Custom patches need documentation
 Development & Test guidelines
 Design guidelines
 OpenAtrium offers a good documentation and 

collaboration basis



  

Communication

 Project web with issues, comments, blogs, 
docu pages etc.

 Notifications via Email and RSS Feeds
 Jabber/XMPP interaction (+ group chat)
 Identi.ca private status updates (twitter-like)
 Commit-Log with useful commit messages
 Face to face meetings



  

Development work flow

 Similar to Scrum
 Time is sliced into one week sprints
 Features and minor fixes are committed into the 

devel branch
 More critical bug fixes are committed into the 

stable branch
 Production site is updated immediately

 Every Monday development is merged and 
populated to the production site



  

Bloody Monday

 Production database is dumped and provided 
to the developers

 Subversion branches get merged
 Conflicts are reported to the developers

 Simpletests get executed and verified
 Stable branch is freshly cloned from the devel 

branch
 Production site is updated
 Caches are cleared



  

Bloody Monday (2)

 Watchdog logs are examined
 File not found errors – are there any dead links on 

your site?
 PHP errors – did you check that array for null 

values?

 Additional DB changes are deployed
 Merge-log that summarizes all abnormalities as 

a report



  

Goals in deployment

 Separate development environment from 
production environment
 Development server vs. production server

 Provide a testing (staging) site that is an exact 
production clone

 Provide a development site for each developer
 Production site updates must be as fast as 

possible
 Production site updates must be consistent



  

Deployed sites

 Productive: the live site
 Testing: clone of productive, experiments 

allowed
 Devel: reflects current devel branch code
 Devel X: dev site of developer X
 Devel Y: dev site of developer Y
 Devel Z: dev site of developer Z
 ...



  



  

Deployment with Subversion

 Drupal core + modules + settings are checked 
into the repository

 All changes are committed to the repository 
and then checked out to production use

 Never ever edit files directly in your production 
site!
 Inconsistencies can cause severe developer 

headache

 Testing/Development sites are able to checkout 
an exact copy



  

Deploying database changes

 Manually: do the changes on a testing site, do it 
again on the production site. Tedious :-(

 Export: do the changes once and import them 
on the production site. Must be module-
supported (e.g. Views, Rules, …)

 Code: implement default hooks and commit 
them. Needs a developer.

 Features: Similar to export, but allows you to 
commit Features-generated modules.



  

Test driven development

 … we don't do that, actually
 Test supported development
 All mission critical features are covered by 

Simpletests
 Mostly black box tests that execute tasks on 

testing (!) sites and report any failures
 Developers are able to verify that their code 

does not break anything existing
 Not all bugs are found via Simpletest, but many 

are avoided from the beginning



  

Drush

 Drush = Drupal shell
 Executes Drupal tasks from the command line
 Automatically detects the Drupal site from the 

directory you execute it in
 We use it to

 Run the Simpletests
 Add/Upgrade/Remove/Enable modules
 Run cron



  

Mysqldump speedup

 Slow:
mysqldump $DB_NAME > dump.sql

 Faster (30%):
mysqldump –-tab $TMPDIR $DB_NAME

 Import:

cat $TMPDIR/*.sql | mysql $DB_NAME

mysqlimport $DB_NAME $TMPDIR/*.txt



  

Subversion drawbacks

 Subversion is not perfect for merging
 Subversion is centralized, a feature must be 

working before you can commit it
 Subversion wants to do CVS right
 Linus Torvalds: “There is no way to do CVS 

right”
 “If you like using cvs, you should be in some 

kind of mental institution or somewhere else.”



  

Version control future

 Distributed version control systems
 Merging is an integral part of the design
 A commit is local
 Changes are pushed to and pulled from 

arbitrary locations
 Versioned development in an independent 

manner



  

Version control future (2)

 And remember kids:

Die CVS, die!

 The good guys:

CVS

Bazaar



  

Deployment Future

 Drush – Drupal command line scripting
 Aegir hosting system

 Easy deployment of a new site with a view clicks
 Management of many sites within a Drupal 

installation

 Drush Make – resolves dependencies
 Features module

 Bundle your CCK, Views, Rules etc. settings and 
save them as “features”



  

Discussion

 Questions
 Answers
 Comments
 Feedback
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