
  

Drupalcamp Vienna 2009

Development workflow and deployment at

Klaus Purer
2009-11-28

http://klausi.fsinf.at

http://klausi.fsinf.at/


  

Who am I?

 Student at the Vienna University of 
Technology
 Software Engineering & Internet Computing

 Software developer & server admin at 
 Google Summer of Code Student 2009

 Work for the Drupal Rules module

 Passionate free & open source 
user/developer



  

Who are you?

 You are Drupal developers
 You want to know how others do their daily 

Drupal work
 You want to organize development and 

deployment for your use case
 You have basic knowledge about version 

control, databases, server administration



  

Who is Absolventen.at?

 Job exchange platform in Austria
 For school and university graduates
 Drupal based
 Highly distributed development team
 ca. 7 developers
 Incrementally evolving the code base



  

Absolventen.at software stack

 + custom Drupal 
themes

 + official Drupal 
modules

 + custom Drupal 
modules

 + custom server 
scripts



  

Goals in development

 Preserve all code changes ever made
 Rollback to any previous state possible
 Seperate new features from bug fixes
 Work in parallel on different parts
 Avoid conflicts by editing the same code
 Show features and tests to others



  

Version control with Subversion

 Solves the code history problem
 Allows working in parallel
 Does not help separating bugs from features
 Solution: devel branch and stable branch

 Requires Merging between them (not funny in 
Subversion < 1.5)

 Problem: a commit must not break the code
 Solution: big new features in feature branches
 Does not avoid conflicts for you



  

Project management

 Solves the edit conflict
 We run an internal project management site 

(Drupal-based)
 Includes an issue/bug tracker with developer 

assignments
 Each module/functionality is assigned to one 

developer (maintains updates, ...)
 Organizes the overall development process in 

milestones



  

Documentation

 Implementation needs documentation 
references to spread the knowledge

 Often a view pointers suffice to explain 
functionality

 Custom patches need documentation
 Development & Test guidelines
 Design guidelines
 OpenAtrium offers a good documentation and 

collaboration basis



  

Communication

 Project web with issues, comments, blogs, 
docu pages etc.

 Notifications via Email and RSS Feeds
 Jabber/XMPP interaction (+ group chat)
 Identi.ca private status updates (twitter-like)
 Commit-Log with useful commit messages
 Face to face meetings



  

Development work flow

 Similar to Scrum
 Time is sliced into one week sprints
 Features and minor fixes are committed into the 

devel branch
 More critical bug fixes are committed into the 

stable branch
 Production site is updated immediately

 Every Monday development is merged and 
populated to the production site



  

Bloody Monday

 Production database is dumped and provided 
to the developers

 Subversion branches get merged
 Conflicts are reported to the developers

 Simpletests get executed and verified
 Stable branch is freshly cloned from the devel 

branch
 Production site is updated
 Caches are cleared



  

Bloody Monday (2)

 Watchdog logs are examined
 File not found errors – are there any dead links on 

your site?
 PHP errors – did you check that array for null 

values?

 Additional DB changes are deployed
 Merge-log that summarizes all abnormalities as 

a report



  

Goals in deployment

 Separate development environment from 
production environment
 Development server vs. production server

 Provide a testing (staging) site that is an exact 
production clone

 Provide a development site for each developer
 Production site updates must be as fast as 

possible
 Production site updates must be consistent



  

Deployed sites

 Productive: the live site
 Testing: clone of productive, experiments 

allowed
 Devel: reflects current devel branch code
 Devel X: dev site of developer X
 Devel Y: dev site of developer Y
 Devel Z: dev site of developer Z
 ...



  



  

Deployment with Subversion

 Drupal core + modules + settings are checked 
into the repository

 All changes are committed to the repository 
and then checked out to production use

 Never ever edit files directly in your production 
site!
 Inconsistencies can cause severe developer 

headache

 Testing/Development sites are able to checkout 
an exact copy



  

Deploying database changes

 Manually: do the changes on a testing site, do it 
again on the production site. Tedious :-(

 Export: do the changes once and import them 
on the production site. Must be module-
supported (e.g. Views, Rules, …)

 Code: implement default hooks and commit 
them. Needs a developer.

 Features: Similar to export, but allows you to 
commit Features-generated modules.



  

Test driven development

 … we don't do that, actually
 Test supported development
 All mission critical features are covered by 

Simpletests
 Mostly black box tests that execute tasks on 

testing (!) sites and report any failures
 Developers are able to verify that their code 

does not break anything existing
 Not all bugs are found via Simpletest, but many 

are avoided from the beginning



  

Drush

 Drush = Drupal shell
 Executes Drupal tasks from the command line
 Automatically detects the Drupal site from the 

directory you execute it in
 We use it to

 Run the Simpletests
 Add/Upgrade/Remove/Enable modules
 Run cron



  

Mysqldump speedup

 Slow:
mysqldump $DB_NAME > dump.sql

 Faster (30%):
mysqldump –-tab $TMPDIR $DB_NAME

 Import:

cat $TMPDIR/*.sql | mysql $DB_NAME

mysqlimport $DB_NAME $TMPDIR/*.txt



  

Subversion drawbacks

 Subversion is not perfect for merging
 Subversion is centralized, a feature must be 

working before you can commit it
 Subversion wants to do CVS right
 Linus Torvalds: “There is no way to do CVS 

right”
 “If you like using cvs, you should be in some 

kind of mental institution or somewhere else.”



  

Version control future

 Distributed version control systems
 Merging is an integral part of the design
 A commit is local
 Changes are pushed to and pulled from 

arbitrary locations
 Versioned development in an independent 

manner



  

Version control future (2)

 And remember kids:

Die CVS, die!

 The good guys:

CVS

Bazaar



  

Deployment Future

 Drush – Drupal command line scripting
 Aegir hosting system

 Easy deployment of a new site with a view clicks
 Management of many sites within a Drupal 

installation

 Drush Make – resolves dependencies
 Features module

 Bundle your CCK, Views, Rules etc. settings and 
save them as “features”



  

Discussion

 Questions
 Answers
 Comments
 Feedback


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

