
Cracking Drupal
Security concepts and pitfalls

Klaus Purer, Software Engineer at epiqo.com
http://klau.si Twitter: @_klausi_
Drupal Developer Days Szeged 2014

http://epiqo.com
http://klau.si
https://twitter.com/_klausi_
http://klau.si

Security strategies
● Trust - who can do what
● Principle of least privilege - lock down

permissions as far as possible
● Defense in depth - multi layered protection

to have fallbacks
● Software updates - rule out obvious

exploits in Drupal, PHP, operating system,
browser etc.

OWASP Top 10
● Open Web Application

Security Project
● List of most critical security

risks
● Assessment of attack vector,

weakness and impact

https://www.owasp.org/index.php/Top_10_2013

https://www.owasp.org/index.php/Top_10_2013
https://www.owasp.org/index.php/Top_10_2013

1. Injection
Attacker supplied parameters are passed to an
interpreter
SQL injection:
<?php

db_query("SELECT uid FROM {users} u WHERE u.name = '" .

$_GET['user'] . "'");

?>

1. Injection (2)
Exploit: http://example.com/?user=x%27%3B%20DROP%20table%
20node%3B%20--

Query: SELECT uid FROM users u WHERE u.name = 'x'; DROP
table node; --'

This will delete your node table => data loss +
Drupal unable to bootstrap.

Preventing SQL injection
Correct usage:
<?php

db_query("SELECT uid FROM {users} u WHERE u.name = :name",

 array(':name' => $_GET['user']));

db_select('users', 'u')

 ->fields('u', array('uid'))

 ->condition('u.name', $_GET['user'])

 ->execute();

?>

Docs: https://drupal.org/writing-secure-code

https://drupal.org/writing-secure-code

1. Injection (3)
Remote code execution:
<?php

// Obvious: never pass user supplied text to the PHP

// interpreter!

eval($_POST['some_field']);

// http://heine.familiedeelstra.com/security/unserialize

unserialize($_POST['some_field']);

?>

High impact vulnerabilities!

http://heine.familiedeelstra.com/security/unserialize

Injection (4)
<?php

// Never use the /e modifier, deprecated since PHP 5.5
preg_replace('/^(.*)/e', 'strtoupper(\\1)', $_POST
['some_field']);

?>

2. Authentication & sessions
● Choose good passwords
● Hash your passwords
● Protect your session IDs
Drupal core covers this pretty well.
Configure HTTPS to not transmit unencrypted
session IDs.
● https://drupal.org/project/securepages
● https://drupal.org/project/securelogin

https://drupal.org/project/securepages
https://drupal.org/project/securepages
https://drupal.org/project/securelogin
https://drupal.org/project/securelogin

3. Cross-Site Scripting (XSS)
● Attackers can inject Javascript tags
● all user provided text needs to be sanitized

before printing to HTML
● (admin) user interaction is required
Reflected XSS example:
<?php

print 'You are on page number ' . $_GET['number'];

?>

Penetration test: <script>alert('XSS');</script>

Persistent XSS
Injected Javascript is stored in the database
Vulnerable, because of the node title:
<?php

foreach ($nodes as $node) {

 $rows[] = array($node->nid, $node->title);

}

$render_array = array('#theme' => 'table','#rows' => $rows);

return $render_array;

?>

Preventing XSS
<?php

foreach ($nodes as $node) {

 $rows[] = array($node->nid, check_plain($node->title));

}

$render_array = array('#theme' => 'table','#rows' => $rows);

return $render_array;

?>

Handling text securely: https://drupal.org/node/28984

https://drupal.org/node/28984

Filtering on output
When handling data, the golden rule is to store
exactly what the user typed. When a user edits
a post they created earlier, the form should
contain the same things as it did when they first
submitted it. This means that conversions are
performed when content is output, not when
saved to the database.

ext filtering cheat sheet

http://drupalscout.com/knowledge-base/drupal-text-filtering-cheat-sheet-drupal-6

http://drupalscout.com/knowledge-base/drupal-text-filtering-cheat-sheet-drupal-6
http://drupalscout.com/knowledge-base/drupal-text-filtering-cheat-sheet-drupal-6

Mitigating XSS
What Drupal core does for us:
● Drupal sets the HTTPOnly flag on session

cookies to prevent cookie stealing in JS
● User form: password change requires

current password (since Drupal 7)
● Text formats for different user roles
We still need to rigorously escape user input.

Content Security Policy
● W3C Browser standard: no more inline JS

execution!
● JS resources (domains) whitelist in HTTP

headers
● supported by newer browsers, but not all

(example: Android browser)
So we still need to rigorously escape user input
(sigh).

4. Insecure Direct Object References

Category: Access bypass vulnerabilities
Happens rarely for Drupal, just use the user
permission and access APIs.

5. Security misconfiguration
● Display of PHP error reporting
Disable at /admin/config/development/logging
● PHP filter module, disable at /admin/modules
● PHP files writeable by the web server
Remove write permissions for www-data
-rw-r----- 1 deployer www-data index.php

drwxr-x--- 32 deployer www-data modules/

drwxrwx--- 7 www-data deployer sites/default/files/

Docs: https://drupal.org/security/secure-configuration

https://drupal.org/security/secure-configuration

Permissions
● Careful with restricted, site-owning

permissions (which roles do you trust?)
● Same for text formats (full HTML!)
● Do not use the user 1 account in your daily

work, it has all permissions
● User 1 name should not be “admin”

Private files configuration
Move the private files directory outside of the docroot to
avoid direct downloads:
example.com

|+ conf

|- docroot

 |- index.php

 |- ... other Drupal files ...

|- private

 |- secret_picture.png

 |- ... other private files ...

|+ tmp

PHP file execution
● Drupal uses the front controller pattern:

almost everything goes through index.php
● Disallow execution of PHP files in subfolders
● Prevents PHP execution in files directory
Apache example:
RewriteRule "^.+/.*\.php$" - [F]

Nginx example:
location ~* ^.+/.*\.php$ { deny all; }

6. Sensitive Data Exposure
● Encrypt sensitive data such as credit card

numbers in your database. Even better: don’
t store them if you don’t have to.

● Again, use HTTPS for authenticated
sessions to not send transmit data in plain
text.

● User passwords are properly hash-salted
by Drupal core.

7. Missing Function Level
Access Control
Access bypass in hook_menu():
<?php

function mymodule_menu() {

 $items['admin/mymodule/settings'] = array(

 'title' => 'Admin configuration',

 'page callback' => 'drupal_get_form',

 'page arguments' => array('mymodule_admin_form'),

 'access callback' => TRUE,

);

 return $items;

}?>

Using permissions
Protect your menu entries:
<?php

function mymodule_menu() {

 $items['admin/mymodule/settings'] = array(

 'title' => 'Admin configuration',

 'page callback' => 'drupal_get_form',

 'page arguments' => array('mymodule_admin_form'),

 'access arguments' => array('administer mymodule'),

);

 return $items;

}?>

Node access bypass
Example: some expense report nodes are
access restricted depending on the user role.
<?php

$records = db_select('node', 'n')

 ->fields('n')

 ->condition('type', 'expense_report')

 ->execute()

 ->fetchAll();

// ... load and render list of nodes somehow.

?>

Correctly using node access
Limit the list of nodes with the node_access tag:
<?php

$records = db_select('node', 'n')

 ->fields('n')

 ->condition('type', 'expense_report')

 ->addTag('node_access')

 ->execute()

 ->fetchAll();

// ... load and render list of nodes somehow.

?>

8. Cross-Site Request Forgery
(CSRF)
function mymodule_menu() {

 $items['mymodule/pants/%/delete'] = array(

 'title' => 'Delete pants',

 'page callback' => 'mymodule_delete_pants',

 'page arguments' => array(2),

 'access arguments' => array('delete pants objects'),

); return $items;

}

function mymodule_delete_pants($pants_id) {

 db_delete('mymodule_pants')

 ->condition('pants_id', $pants_id)->execute(); }

Exploiting CSRF
Attacker posts a comment somewhere:

Chain of an attack:
● Logged-in admin visits comment page
● Browser fetches the image src and sends cookies along
● Request is successfully authorized
● Delete query is executed
● Pants 1337 are gone.
http://epiqo.com/en/all-your-pants-are-danger-csrf-explained

http://epiqo.com/en/all-your-pants-are-danger-csrf-explained
http://epiqo.com/en/all-your-pants-are-danger-csrf-explained

Protecting against CSRF
Write operations need to be protected with:
● Confirmation forms or
● Security tokens in the URL
http://example.com/mymodule/pants/1337/delete?
token=tLBSLWTZVpRmp1cD_I4hCKd2vS-dJbv6xxTICKr3DHM

POST requests: always use the Form API!
Docs: https://drupal.org/node/178896

https://drupal.org/node/178896

9. Using Components with
Known Vulnerabilities
Widespread attack vector, often automated
● Update all your software regularly
● Monitor security mailing lists, RSS feeds etc.
● Enable Drupal’s update status notifications
● Security advisories at https://drupal.org/security
● Disable software components that are not

used

https://drupal.org/security

10. Unvalidated Redirects and
Forwards
Vulnerability:
<?php

drupal_goto($_GET['target']);

Exploit example that redirects to evil.com:
http://example.com/cart?target=http%3A%2F%2Fevil.com

Perfect for phishing attacks. Correct:
<?php

if (!url_is_external($_GET['target'])) {

 drupal_goto($_GET['target']);

}

Do you see the pattern?
● Don’t trust any user provided data in the

URL, the request or content in the database
● Attackers use browser features to perform

actions behind the user’s back (XSS, CSRF,
open redirects)

● Attackers use known vulnerabilities and
automated tools to mass-hijack sites

Denial of Service (DoS)
Goal: bring the site down, make it unresponsive
How: execute expensive actions very often
Example from SA-CONTRIB-2013-053:
<?php

// Too many login attempts, delay the response.

@sleep($sleep_time);

?>

sleep() will bind server process resources, too!

https://drupal.org/node/2023585

How to recover from an attack
● Determine what was compromised and

when
● Restore from backup
● Update code (and server software)
● Change all passwords and keys
● Audit your code (custom modules first!)
● Scan logs for traces of the attacker (Drupal

watchdog log, web server log, syslog etc.)

Useful security modules
● Security Review: check your site for

misconfiguration https://drupal.
org/project/security_review

● Paranoia: no PHP eval() from the web
interface https://drupal.org/project/paranoia

● Seckit: Content Security Policy, Origin
checks against CSRF https://drupal.
org/project/seckit

https://drupal.org/project/security_review
https://drupal.org/project/security_review
https://drupal.org/project/security_review
https://drupal.org/project/paranoia
https://drupal.org/project/seckit
https://drupal.org/project/seckit
https://drupal.org/project/seckit

Thank you!
Questions?

Klaus Purer, Software Engineer at epiqo.com
http://klau.si Twitter: @_klausi_

http://epiqo.com
http://klau.si
https://twitter.com/_klausi_
http://klau.si

