
Web Service Composition in
Drupal

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur/in

im Rahmen des Studiums

Software Engineering and Internet Computing

eingereicht von

Klaus Purer
Matrikelnummer 0426223

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung
Betreuer/in: Prof. Dr. A Min Tjoa
Mitwirkung: Univ.-Ass. Dr. Amin Anjomshoaa

Wien, 11.5.2011
(Unterschrift Verfasser/in) (Unterschrift Betreuer/in)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 11.5.2011
Klaus Purer

i

Abstract

Building web applications has become a complex task and often requires interaction
with other web applications, such as web services. Drupal is a free and open source
content management system and framework that provides a rich platform for rapid web
development. The modular and extensible nature of Drupal allows developers to cus-
tomize and embrace the core functionality and to create new features. This thesis is
about investigating and implementing a web service client module for Drupal that is
able to consume classical WS* web services as well as RESTful web services. We will
present a web service abstraction model which supports different web service types in
order to facilitate integration of web service data into workflows in Drupal. Those work-
flows are built with the help of a rule engine module (“Rules”) that offers the creation
of event-condition-action rules. We will discuss a solution that provides a web service
operation as Rules action and that achieves web service composition by invoking multi-
ple web services in a Rules workflow. This is important for web applications that need
to communicate with several external web services and require the orchestration of the
data flows between them. Additionally a user interface has been built where web ser-
vices can be described and used on Drupal administration pages, which means that no
programming effort is needed to access web services. Other features such as automatic
parsing of WSDL files or sharing of web service descriptions between different Drupal
sites are also realized. The implementation has been evaluated and tested on the basis
of an automatic translation use-case that is comprised of a workflow with multiple web
service invocations.

ii

Zusammenfassung

Das Erstellen von Webapplikationen ist mittlerweile eine komplexe Aufgabe und er-
fordert oftmals die Integration mit anderen Webapplikationen, im speziellen mit Web-
services. Drupal ist ein freies Open Source Content Management System und Frame-
work, das eine umfassende Plattform für schnelle Web-Entwicklung bereitstellt. Die
modulare und erweiterbare Charakteristik von Drupal erlaubt EntwicklerInnen die Kern-
funktionalität anzupassen und auszunutzen, um neue Funktionalitäten zu erstellen. Diese
Diplomarbeit beschäftigt sich mit der Erforschung und Implementierung eines Webser-
vice Client Moduls für Drupal, welches in der Lage ist, sowohl klassische WS* Web-
services als auch RESTful Webservices zu konsumieren. Wir werden ein Abstraktions-
modell für Webservices präsentieren, das verschiedene Webservice-Typen unterstützt
und welches die Integration von Webservice-Daten in Drupal Workflows ermöglicht.
Diese Workflows werden mit Hilfe eines regelbasierten Moduls (“Rules”) konstruiert,
mit dem Event-Condition-Action Regeln erstellt werden können. Wir werden eine Lö-
sung diskutieren, die eine Webservice-Operation als Rules Action zur Verfügung stellt
und die damit die Komposition von Webservices erreicht, indem mehrere Webservices
in einem Rules Workflow aufgerufen werden. Das ist wichtig für Webapplikationen, die
mit vielen externen Webservices kommunizieren müssen und den Datenfluss zwischen
diesen orchestrieren müssen. Zusätzlich wurde eine Benutzeroberfläche implementiert,
womit Webservices auf Drupal Adminstrationsseiten beschrieben und benutzt werden
können. Dadurch werden keine Programmierkenntnisse benötigt, wenn Webservices
angesprochen werden sollen. Die Realisierung beinhaltet auch andere Funktionalitäten
wie das automatische Auslesen von WSDL-Dateien oder die Weitergabe von Webser-
vice Beschreibungen an andere Drupal-Installationen. Die Implementierung wurde mit
einem Anwendungsfall zur automatischen Übersetzung evaluiert und getestet, der aus
einem Workflow mit mehreren Webservice Aufrufen besteht.

iii

Acknowledgements

I would like to dedicate this thesis to the Drupal community who inspired me in many
ways and showed me the benefits of sharing code, ideas and support.

I wish to acknowledge Wolfgang “fago” Ziegler for his comprehensive feedback
when developing the project of this thesis. Kudos go out to Klaus Furtmueller that came
up with the initial idea for the thesis.

I thank Dr. Amin Anjomshoaa for the supervision of this thesis and Prof. A Min
Tjoa for the opportunity of writing the thesis at the Institute of Software Technology &
Interactive Systems.

To the Free Software / Open Source communities, I extend my gratitude for making
all of my work worthwhile – it’s just so much more fun if there is someone out there
who can put the results into productive use.

iv

Contents

Contents v

1 Introduction 1
1.1 Motivation and background . 1

Drupal . 1
Web services . 2
Workflows and Rules . 3
Free and open source software . 3

1.2 Problem statement and goal . 4
1.3 Outline . 4

2 Foundations 6
2.1 Common protocols and standards . 6
2.2 Web Services . 7

Service Oriented Architecture . 7
WS* Web Services . 8
Resource Oriented Architecture and REST 10
RESTful Web Services . 12

2.3 Web Service composition . 13
Orchestration vs. choreography . 14
WS-BPEL . 15
BPEL for REST . 18
Mashups . 18

2.4 Web Content Management Systems 19
2.5 Drupal . 21

Drupal core architecture . 21
Entities and Fields . 23
Rules . 24
Rules Web . 25

3 Objectives 27

v

3.1 Web service client module . 27
3.2 Web service composition with Rules 28
3.3 An automatic translation use case . 28
3.4 Web service integration without programming effort 28
3.5 Automatic WSDL parsing . 29
3.6 Sharing of exportable web service descriptions 29

4 Realization 31
4.1 Analysis . 31

Web service model . 31
SOAP service layer . 34
RESTful service layer . 35
Complex web service data types . 36
Import/Export format . 37
Developer API . 37
Web service composition . 38

4.2 Architecture . 38
Web Service descriptions as entities 42
Endpoints . 46
Invoking web service operations . 46

4.3 Implementation . 47
Rules integration and service composition 47
Administration user interface . 52
WSDL parsing . 55
Export . 56

5 Automatic translation use case 59
5.1 Requirements . 59

Translation web services . 60
Web data extraction with dapper.net 61
Machine learning component . 62

5.2 Workflow building . 63
5.3 Results . 64

6 Related work 66
6.1 Web service providers in Drupal . 66

Services module . 66
RESTful Web Services module . 67

6.2 WS-BPEL composition projects . 67
6.3 Web services in other content management systems 69

7 Conclusion and Outlook 71
7.1 Evaluation . 71
7.2 Future work . 73
7.3 Summary . 74

A Acronyms 75

B Index 77

List of Figures 77

List of Tables 78

Listings 78

C Bibliography 80

Chapter 1
Introduction

If you can, help others; if you cannot do that, at least do not harm them.
– Dalai Lama

1.1 Motivation and background

Drupal
Drupal1 is a popular Open Source Content Management System (CMS) that allows
simple creation and management of web sites and web applications. It was introduced
in 2001 with the idea of storing web content in a database instead of putting it into
HTML files. Historically the web was a collection of documents linked together stati-
cally [Jaz07]. But now administrators and web masters were able to add and edit content
directly on the site – instead of uploading files with a FTP account to the hosting server,
they authenticated on site and performed changes in an administration interface.

Nowadays Drupal has evolved: it is not only a CMS anymore, but has matured into a
web framework as well that provides many APIs for developers to easily integrate their
customizations and features. There are over 6,000 contributed modules2 on drupal.org
that extend or modify the Drupal core system. All of them are distributed under the
terms of the GNU General Public License (like Drupal itself) and are part of the reason
why Drupal is so successful. The dynamics of Free and Open Source Software and
the module ecosystem strongly influence innovation and broad reach among the Drupal
community.

1Drupal: http://drupal.org
2Drupal modules: http://drupal.org/project/modules

1

http://drupal.org
http://drupal.org/project/modules

CHAPTER 1. INTRODUCTION 2

Since the web grew and the term Web 2.03 came up, Drupal was redefined as a
provider for social network platforms. Content and users were already the primary fo-
cus in Drupal, so it was a reasonable step to let arbitrary users manage their content
which previously was done by site administrators only. But building sites and opening
them up for users is not enough – integration with other social services like Facebook,
Twitter or other web services is most often a requirement. As web sites get bigger and
more complex, they also need to address more and more workflows between users, ad-
ministrators or other data providers and consumers (services, external sources, business
processes etc.).

Web services
Web services allow humans or automated agents to interact with a system via the web.
They are described by a well known interface, are self-contained and expose a certain
functionality of the system to the outside world. They offer operations to send and
retrieve data and it is possible to compose them in a workflow. The term web services
was often associated with the WS* stack, a set of standards for description, lookup and
communication regarding web services mostly based on exchanging SOAP messages
[DS05]. This formally very strict approach did not satisfy simple needs for some use
cases and lead to the rise of RESTful services in recent years [FT00]. They offer an
interface that is simple but not formally described and rely on the architecture of HTTP
and are therefore more resource oriented than operation oriented.

Both types of web services are now in wide use and are accepted as one major
concept of the web. Modern web sites are forced to provide services themselves to
allow third parties easy and fast consumption of the sites’ data. On the other hand
complex sites often need to connect to other sites to import data or aggregate content.
In most cases there is a considerable amount of development and programming effort
needed to integrate the machine readable web service interfaces and to map internal data
structures to the corresponding service parameters or results.

Drupal offers the possibility to provide various kinds of services, like built-in sup-
port for RSS feeds or more advanced components like the Services module4. The latter
allows the configuration of SOAP, REST and other service types to expose Drupal inter-
nals via known interfaces. There are also approaches for the other way around (consum-
ing services in Drupal), but they all are tied to specific services that need to be integrated
into the system and the data workflows.

3Web 2.0 is a fuzzy buzz word that mostly describes interactive and collaborative behavior of web
users that create and update web content. Tim O’Reilly has the most widely accepted description of the
term [O’R05].

4Services module: http://drupal.org/project/services

http://drupal.org/project/services

CHAPTER 1. INTRODUCTION 3

Workflows and Rules
Web applications fulfill more and more different tasks at a time and often need to or-
ganize workflows, business processes and automatic data management. An example
would be the use case of buying an item in a web shop, where several follow-up tasks
need to performed. The customer needs to be billed, the products need to be scheduled
for delivery, the remaining amount of products needs to be updated, external software
services must be notified or invoked etc. Those tasks need to be implemented, coor-
dinated and updated on a regular basis. They comprise one or more workflows which
need to be re-configured or fine-tuned periodically.

CMS like Drupal aim to make many configurations available to site builders and
administrators, so that no extra programming effort is needed when customizing the
system. This applies to workflows as well and there is the Rules module5 for Drupal
that especially targets that. It allows site administrators to define event-condition-action
rules, that represent workflows on a high abstraction level. The actions are executed
after an event was triggered and if the conditions are satisfied. For example after a user
updates some content (this is the event) she must not match the original author (this is
the condition) then the original author is notified per e-mail that his content was changed
(this is the action). More complex rules are possible and events provide a data context
(e.g. affected content, user, etc.) that can be used and extended by the actions.

The Rules module is extensible and allows developers to easily implement new
events, conditions or actions. They can be combined with the existing components
and offer new possibilities when creating workflows. This flexible approach solves the
problem of recurring needs and keeps the definition of a rule on a high level that is easy
to understand and maintain.

Free and open source software
Drupal is licensed under the terms of the GNU General Purpose License (GPL) and is
therefore free and open source software. All Drupal extending modules must be released
under the same terms which creates a huge ecosystem of freely available software. This
is one reason of Drupal’s success because people can inspect the source code and con-
tribute improvements and bug fixes back. When building web applications it is not
necessary to reinvent the wheel all the time; people can instead work collaboratively on
new features and modules.

It is also important for new concepts and ideas to be developed in an open manner
in order to be accepted by the community. Only free and open source modules will
get wide adoption and development momentum. Therefore the implementation of this
project will also be released as free and open source software to comply with the Drupal

5Rules module: http://drupal.org/project/rules

http://drupal.org/project/rules

CHAPTER 1. INTRODUCTION 4

licensing requirements on one hand, and to encourgage other developers to co-operate
on the other hand.

1.2 Problem statement and goal
As we saw there is an increasing need to integrate web applications with web services
and to manage complex tasks in highly abstracted workflows. Currently there is no uni-
form solution for Drupal to connect arbitrary web services without extra programming
effort. For Drupal users it is not possible to specify web service metadata and then make
use of them in a workflow system like Rules. There are several Drupal modules avail-
able that integrate with one selected service, but they do not offer generic support for
other services nor are they designed to be used in rules or workflows.

Furthermore there is no framework in Drupal to allow the composition of web ser-
vices. Often it is a use case for workflows to use multiple external services to exchange
data or to trigger follow-up actions. A major problem in this regard is the transformation
of data that has to fit different formats for different services. There is no conversion tool
that maps inputs and outputs of services between services and Drupal and there is no
integration for Rules yet.

The goal of this project is to explore existing concepts and implementations and to
embrace them to the needs of workflows with web services in Drupal. The focus will be
on a web service abstraction module and on the Rules module integration to accomplish
this task.

1.3 Outline
This thesis is structured in the following chapters:

Chapter 2 gives some overview of theoretical concepts of web services and their ar-
chitecture. Then also web service composition is covered where existing paradigms are
examined that provide a foundation for this work. Content Management Systems, i.e.
Drupal, are discussed and important modules in the Drupal ecosystem are introduced.

Chapter 3 contains objectives and goals that are addressed by the implementation
of this project. It describes the requirements that have to be met in order to fulfill the
project goal.

Chapter 4 goes into the details of the practical part of this thesis. Design and real-
ization are discussed and technical solutions are presented. A new web service client
module is introduced and its relationship to the Rules module is explained.

Chapter 5 describes the use case of an automated translation workflow that applies
the implementation to demonstrate the functionality of the developed solution.

CHAPTER 1. INTRODUCTION 5

Chapter 6 will give an overview of related work and other systems that deal with
similar problems.

Finally chapter 7 concludes the document and outlines the findings and lessons
learned during this work. Future aspects and open issues are discussed.

Chapter 2
Foundations

Wanda: But you think you’re an intellectual, don’t you, ape?
Otto: [superior smile] Apes don’t read philosophy.
Wanda: Yes they do, Otto, they just don’t understand it!
– from the movie “A Fish Called Wanda”

In this chapter I will lay out some technology foundations that are necessary for my
work. It will cover existing concepts and approaches that form a basis for the develop-
ments I am going to present in chapter 4.

2.1 Common protocols and standards
There are a lot of standards around the web and services, so I will cover some common
of them here, which will be later mentioned and referenced.

XML The eXtensible Markup language is a data format or more generically a way to
define data formats. It has consistent and clean text tagging, it separates con-
tent from format and allows hierarchical data structures. It also has facilities for
user-definable data structures [UG98], which is a central feature needed by web
services.

HTTP The Hypertext Transfer Protocol is the standard application layer protocol to ex-
change hypermedia and other resources on the web. It is designed for client-server
style request-response communication patterns and it is stateless, which means
that every request-response interaction is independent from any other. HTTP is a
light weight protocol and is widely used and implemented on many systems. The
current version of the protocol 1.1 which is defined by RFC2616 [FGM+99].

6

CHAPTER 2. FOUNDATIONS 7

2.2 Web Services

Service Oriented Architecture
Before going into details with web services one should have a decent understanding
of the underlying paradigm called Services Oriented Architecture (SOA), which is an
abstract concept in software engineering. The key components are services that are
independent from each other and interact on a well defined communication channel
with each other. There are several properties that services fulfill [PTDL07, SHM08]:

• Platform independent interface. Services can be accessed in a standards-based
manner.

• Self-contained. Services are modular and provide their functionality indepen-
dently of other services.

• Loosely coupled. A service is a “black box”, e.g. service consumers do not need
to know about underlying technical internals of the service.

SOA is not tied to any specific technology but rather implies some driving forces ac-
cording to Michael Stal [Sta06]:

• Distribution. Software components of the system run in different locations on a
network. They need to communicate via a protocol.

• Heterogeneity. Different software entities may be implemented in different tech-
nologies. Integration must be possible without knowing detailed contexts.

• Dynamics. How the system is comprised may change at runtime and cannot be
assumed statically.

• Transparency. As a result of heterogeneity and dynamics service providers and
consumers are oblivious to implementation details of a service.

• Process-orientation. Services allow for composition in more coarse-grained
workflows.

As we see SOA is a perfect fit for complex systems that need to integrate various inde-
pendent subsystems. In order to make use of the services they must be discoverable by
service requesters and publishable by service providers. This is often accomplished by
a service registry, where services can be looked up and registered [Pap08]. Figure 2.1
visualizes the interaction of these roles.

CHAPTER 2. FOUNDATIONS 8

Service Registry

Service ProviderService Requester
interact

looku
p publish

Figure 2.1: SOA roles and their relationship.

WS* Web Services
One possible realization of SOA is the classical WS* protocol stack. It is called WS*
because most existing standards in the protocol family have abbreviations that start with
“WS”. The World Wide Web Consortium (W3C) has a definition of web services in
their glossary [W3C04]:

A Web service is a software system designed to support interoperable machine-
to-machine interaction over a network. It has an interface described in
a machine-processable format (specifically WSDL). Other systems inter-
act with the Web service in a manner prescribed by its description using
SOAP-messages, typically conveyed using HTTP with an XML serialization
in conjunction with other Web-related standards.

Web services of this kind are often also called Big Web Services, SOAP oriented
Web Services or WSDL based services [Bru09]. As the names already suggest, there are
three core standards that are significant: SOAP, WSDL and UDDI. All of them make
heavy use of XML as a basic expression format. Figure 2.2 shows how these standards
play out in the roles of SOA.

SOAP

The Simple Object Access Protocol is a standard to issue remote procedure calls and
send/receive messages over the Internet. Commonly it uses HTTP as underlying trans-
port protocol, but can be used with others as well. Messages are encoded with XML

CHAPTER 2. FOUNDATIONS 9

UDDI Registry

Service ProviderService Requester
SOAP

looku
p

publish

Request Response

Web Service

WSDL
Specification

WSDL
Specification

Figure 2.2: Web Service standards and their relationship in SOA.

and consist of an envelope for namespace definitions, an optional header for additional
information (e.g. security, addressing etc.) and a body containing the message data
itself, i.e. service operations and their arguments. There are two types of messages: ser-
vice requesters send SOAP Requests and service providers send back SOAP Responses
[TP02].

WSDL

The Web Service Description Language is an XML vocabulary to specify metadata for
web services like where and how clients can invoke the service and what operations and
arguments are available. WSDL is extensible and is designed as a machine-readable
format, so that service consumer agents can pick up the necessary information about
the service automatically. Currently WSDL 1.1 is the dominant version that is widely
accepted, however WSDL 2.0 has been released as W3C recommendation in 2007, but
has not been adopted by the industry that often yet [Bru09]. An alternative to WSDL
is the Web Application Description Language (WADL), also an XML based description
standard but intended specifically for RESTful web services (see section 2.2) [Bru09].

UDDI

UDDI is an abbreviation for Universal Decription, Discovery and Integration and im-
plements the service registry in the SOA model. It allows service providers to publish

CHAPTER 2. FOUNDATIONS 10

their service descriptions (i.e. WSDL) and service consumers consumers to lookup and
locate web services they need. UDDI specifies the API to interact with such a registry
via SOAP messages [Bru09, TP02].

The UDDI vision of central global registry where all available web services are
available has not been realized so far and can be considered as a failure [DS05]. Instead,
there are business specific or internal registries in use, or other channels to exchange web
service metadata information are implemented.

Resource Oriented Architecture and REST
Resource Oriented Architecture (ROA) is a refinement of SOA with some additional
architectural constraints [Ove07]. It is the basis for the second common type of web
services – RESTful web services, see section 2.2 – besides WS* web services. The
central entity in ROA is the resource, an abstract information item that has a name, a
representation and references to other resources. The name plays the role of an identifier
to address a resource. Representations of resources are data elements that are transfered
between the actors in ROA.

REpresentational State Transfer (REST) is an architectural style of communication
between web components and was first introduced by Roy Fielding in his dissertation
in 2000 [Fie00]. It reflects the design principles of the World Wide Web (WWW), the
largest and most complex distributed system nowadays. REST and ROA principles over-
lap in many aspects and they will be explained together here. The main characteristics
of both can be described as follows [Bru09]:

Addressability. Resources are assigned with unique names that make them globally
addressable in the system. Unified Resource Identifier (URI) is the standard to
achieve this concept in the Internet, as described in RFC2360 [BLFM98]. It is
important for clients that the naming scheme is meaningful and expressive.

Uniform interface. All resources can only be exchanged with four fixed operations:
Create, Read (or Retrieve), Update and Delete. This ensures a very simple but
sufficient pattern for communicating all relevant states of resources. It is no coin-
cidence that HTTP itself provides similar methods to manipulate resources, which
can be mapped to CRUD accordingly (see table 2.1).

Statelessness. Interaction between client and server is always opened and closed by
one request-response sequence. This means that each request must contain all
necessary information at once so that the operation can succeed [Fie00]. On one
hand this allows flexibility and scalability, on the other hand information like au-
thorization details must be sent in every request and can result in a worse network
performance. However, it fits perfectly to the statelessness of HTTP.

CHAPTER 2. FOUNDATIONS 11

Nouns (resources)
e.g. http://example.com/message

Verbs
(operations)

e.g. GET, PUT

Content types
(representations)
e.g. HTML, XML

REST

Figure 2.3: REST triangle with examples for resources, operations and content types.

Layered System. A hierarchical set of layers helps to manage system complexity and
independence of components. “Each component cannot "see" beyond the imme-
diate layer with which they are interacting” [Fie00], which allows the insertion of
caches or load balancers as proxy network components [Bru09].

Table 2.1: Mapping CRUD operations to HTTP methods [BB08].

CRUD operation HTTP method description
Create POST Create a new resource or

replace it if it already exists.
Read GET Retrieve a resource.

Update PUT Update an existing resource or
create it if it does not exist.

Delete DELETE Delete the addressed resource.

Another perspective on REST is the REST triangle, which describes the semantics
of the REST naming scheme. Nouns represent resources, verbs are used for operations
on resources and content types define the representation of the resource (see figure 2.3)
[Wil10].

CHAPTER 2. FOUNDATIONS 12

RESTful Web Services
Since there are so many standards for WS* style web services and the protocol stack
is overwhelming for service implementers, a new movement for RESTful web services
that follow the REST principles came into existence. The goal is to work with simple
and scalable services that make heavy use of existing web standards and leverage the
full potential of the underlying protocol features. All of the SOA design principles (see
section 2.2) apply to RESTful web services as well, but the focus is more on exchang-
ing resources with services instead of the remote procedure call (RPC) style in WS*
services.

Many Web 2.0 platforms offer RESTful web services to provide their functionality
to third parties, a popular example is the Facebook Graph API1. The vast majority of op-
erations on those RESTful services are GET operations for retrieving resources; POST,
PUT and DELETE are not used that often.

JSON

Besides the technology standards HTTP, URI and XML there is one further common
content type format for RESTful web services: JSON (JavaScript Object Notation). It
is described in RFC4627 [Cro06] and is a light weight data format that is used to carry
a resource’s representation. Although JSON originates from JavaScript it is considered
language independent and is supported by many platforms [Bru09]. An advantage of
JSON over XML is that it can be used directly in client-side JavaScript interpreters, e.g.
no parser is needed, which results in a performance gain [NPRI09].

REST-RPC hybrids

The concept of REST is not implemented fully on many RESTful services today. Due
to the fact that RPC semantics are well known and are used in WS* services, many
“REST” services followed and employ them as well. Those services that violate one
or more constraints of REST are called Hybrid Web Services [RR07] or REST-RPC
Hybrids. Some common misconceptions regarding REST are [Bru09][PZL08]:

• RPC semantics in the payload. Services use the HTTP payload as an envelope
for carrying an operation request rather then using the correct HTTP request type
in the header.

• Ignoring HTTP method semantics. Services do not use the correct HTTP re-
quest type for CRUD, e.g. HTTP GET with an extra query parameter is imple-
mented for all four operations.

1Facebook Graph API: http://developers.facebook.com/docs/api/

http://developers.facebook.com/docs/api/

CHAPTER 2. FOUNDATIONS 13

• Ignoring HTTP header facilities. Services put information about authorization
or response encoding into query parameters instead of using the destined HTTP
headers.

• One endpoint catches all. Services misuse URI by putting the resource name in
a query element, so that several resources live at the same base URI.

Service description

In order to make RESTful services metadata machine-readable, a description format like
WSDL is needed. However, some authors like Joe Gregorio argue that REST does not
need a description format [Gre07] because it cannot be reliable enough for the dynamics
of the changing web. Nevertheless there are several approaches to provide the service
description [Bru09]:

• WSDL 1.1 is the most used standard for WS* services, but lacks capabilities to
fully describe RESTful service characteristics.

• WSDL 2.0 is the new standard and provides great flexibility to also describe
RESTful services, but it is not in wide spread use and can be considered un-
supported by most platforms.

• WADL The Web Application Description Language is an XML based standard
as well and was specifically developed for RESTful services as counterpart to
WSDL in the WS* world. It is well founded but is also not that common in real
world service implementations.

2.3 Web Service composition
For larger business processes and workflows it is necessary to combine different web
services that carry out a specified task together. We speak of web service composition
when new processes or applications are built with existing web services by linking them
together. The result of the composition is called a composite service and it can be part
of another composition as well, leading to a recursive invocation of services. Dustdar
and Schreiner describe that as follows [DS05]:

[Web service composition] allows the definition of increasingly complex
applications by progressively aggregating components at higher levels of
abstraction. A client invoking a composite service can itself be exposed as
a web service.

CHAPTER 2. FOUNDATIONS 14

Business A Business B

Start
activity

Send
order

Receive
ack

Send
confirm

End
activity

Receive
order

Send
ack

Receive
confirm

Business C

Order request

Order
acknowledgement

Order
confirmation

private process -
Orchestration

public process -
Choreography

Figure 2.4: Example business activities to illustrate the difference between orchestration
and choreography.

In principle there are two types of service selection strategies: static, which means
that the services to be composed are selected at design time and dynamic, which means
that concrete services are decided at runtime [DS05]. Service composition is a hot re-
search topic, as there are several complex issues like how to represent such an abstract
composition process, interoperability of services, data mapping or efficiency and per-
formance of composition solutions. Scholars focus mainly on classical WS* services
when they speak of web service composition, but recently there are also developments
regarding RESTful services [Pau09].

Orchestration vs. choreography
There are currently two main approaches for syntactic web service composition: WS
orchestration and WS choreography. We refer to orchestration as the private executable
business process and to choreography as the public, observable exchange of messages
(see figure 2.4 for an example). Both terms overlap somehow and can be described with
the following properties [tBBG07]:

Orchestration. A central coordinator (the orchestrator) composes a business process of

CHAPTER 2. FOUNDATIONS 15

web services and is responsible to invoke them and to form a workflow. Existing
web services are reused and are part of the composition. A common industry
standard protocol for web service orchestration is WS-BPEL (see section 2.3).

Choreography. Equal parties take part in a business collaboration and communicate in
a peer-to-peer model. There is no central coordinator; instead there is a conver-
sation definition that determines the interactions between the participants. WS-
CDL is the corresponding protocol standard which exists in theory but has not
been adopted widely in the industry.

WS-BPEL
The Web Services Business Process Execution Language provides an XML based vo-
cabulary to describe web service compositions. It relies on WSDL and a process defined
in WS-BPEL can be exposed as a service described by WSDL [tBBG07]. As already
mentioned it is primarily intended for the web service orchestration approach, although
it provides some support for choreography as well.

In WS-BPEL processes are defined in a block-structured manner and contain several
activities that are the basic components of a process. Partners are external services that
interact with a process; they are integrated via their WSDL descriptions as partner links.
Containers serve as data providers that hold variables of input or output messages. A
process is organized with structured activities that arrange basic activities, here are the
most import ones summarized from the official OASIS standard [JE+07]:

• Basic activities:

– Invoke – send a request to an external web service (to a partner)

– Receive and Reply – provide a web service operation to a partner

– Assign – copy data from one variable to another or insert new data from
expressions

– Throw and Rethrow – signal internal faults and propagate faults

– Wait – wait for a certain period of time and delay the execution

– Exit – immediately end a process

• Structured activities:

– Sequence – execute a collection of activities sequentially

– If and Switch – conditional behavior by executing a matching branch with
associated activities

– While and RepeatUntil – loops for repetitive execution of activities until a
condition is met

CHAPTER 2. FOUNDATIONS 16

Sequence Receive

Reply

Flow

Sequence Sequence

While

Invoke

Assign

Invoke

Invoke

If

Throw

Exit

Assign

<sequence>
 <receive .../>
 <flow>
 <sequence>
 <while ...>
 <invoke .../>
 <assign .../>
 <invoke .../>
 </while>
 </sequence>
 <sequence>
 <invoke .../>
 <if ...>
 <throw .../>
 <exit/>
 </if>
 </sequence>
 </flow>
 <assign .../>
 <reply .../>
</sequence>

Figure 2.5: A BPEL process example with structured activities that contain basic activ-
ities and manage the behavior of the process.

– Pick – events are associated with activities, which are executed when the
event occurs

– Flow – execute activities in parallel and wait until all of them are finished

– ForEach – loop using a counter

Figure 2.5 shows an example how those activities play together in a block diagram
and in the representing XML.

WS-BPEL is tightly coupled with WSDL 1.1 and is therefore not really suitable for
RESTful web services. Even if WS-BPEL would support WSDL 2.0 (which is capa-
ble of expressing REST properties, see section 2.2) it would be too clumsy to express
connections to RESTful services efficiently.

CHAPTER 2. FOUNDATIONS 17

Figure 2.6: Solutions to compose RESTful web services in WS-BPEL either with
WSDL 2.0 or BPEL for REST [Pau09].

CHAPTER 2. FOUNDATIONS 18

BPEL for REST
BPEL for REST addresses the issue of integrating RESTful web services in process or-
chestration and provides an extension for WS-BPEL [Pau09][Pau08]. The four possible
resource CRUD invocations of a RESTful web service could be mapped to operations
in WSDL 2.0 and thereby used with the <invoke> BPEL language expression, but
then service consumers would have to create the WSDL document for a RESTful web
service themselves, which would contradict the principle that service providers should
maintain the web service description [Pau09]. BPEL for REST takes an approach of
a deeper BPEL language integration, so that the Resource Oriented Architecture of a
RESTful web service can be better embedded and has the advantage of keeping re-
source semantics. Figure 2.6 visualizes the two possibilities of handling RESTful web
services in WS-BPEL and also shows the GET, POST, PUT and DELETE expressions
used in BPEL for REST to directly access remote resources. Cesare Pautasso claims that
“explicitly controlling the RESTful interaction primitives used to invoke a service and
native support for publishing the state of BPEL processes as resources from a process
would be beneficial” [Pau09].

Mashups
Mashups are another form of web service composition with a focus on aggregating,
mapping, filtering and remixing of web content. In contrast to the enterprise-centric
WS* protocols, mashups are more end user oriented and loosely couple mostly simple
services [LHSL07]. An important aspect of mashups is that they are user-generated,
which distinguishes them from classical web service compositions that are mostly cre-
ated by IT experts. The services that are used in mashups include Web 2.0 technologies
like AJAX, semantic web protocols like RDF, syndication feeds like RSS and Atom,
REST/SOAP based web services and even screen scraping of web sites [Mer09]. By us-
ing that Web APIs a mashup aims to expose a new web application. Mashups are created
in a web browser and may be connected to mashup provider sites that may assist in the
creation process. The resulting mashup application is executed partly server-side on the
mashup provider and partly client-side to assemble the mashed content in the client web
browser. The retrieval of mashup content may not only be the provider’s responsibility,
but also the client browser can be delegated to fulfill all or part of the communication
with the external Web APIs. Figure 2.7 illustrates the architecture of mashups.

The big advantages of mashups are their ease of use (no developer needed to build
it) and the ability to compose them ad hoc in a standard web browser. On the downside
they are often limited to pre-defined services and they are not capable of implementing
complex business tasks. A famous example of a mashup provider is Yahoo Pipes2.

2http://pipes.yahoo.com

http://pipes.yahoo.com

CHAPTER 2. FOUNDATIONS 19

Client web browser

Mashup (HTML,
JavaScript,
Flash ...)

Mashup Provider (Server)

Mashup logic
(PHP, JSP,
Ruby, ...)

Web
Services

Web Data
Feeds

Semantic
Web

HTTP, XML,
JSON ...

AJAX

Screen
Scraping

REST,
SOAP

RSS,
Atom

RDF,
SPARQL HTML

Figure 2.7: Mashup architecture with external Web APIs and their connection to server
and client side.

2.4 Web Content Management Systems
Building a web site has become an increasingly complex task as there are many dif-
ferent people involved, e.g. “a team of content providers, editors and designers that
strive to deliver up-to-date and correct information” [GN02]. Content management sys-
tem (CMS) is a term that comes from content publishing and content repositories ap-
proaches [LLSL08] that deal with preserving structured information. A Web Content
Management System provides content as a standard web application and allows collab-
oration and efficient administration of that content. However, when we use the acronym
CMS in the web engineering domain, we refer to a Web CMS, strictly speaking.

CHAPTER 2. FOUNDATIONS 20

One original purpose of a CMS was to relieve the technical burden of creating web
content:

A Content Management System (CMS) can be defined as a database of in-
formation and a way to change and display that information, without spend-
ing a lot of time dealing with the technical details of presentation. Informa-
tion is usually displayed in a web browser window. [Sim05]

There are different types of CMS today, e.g. general purpose CMS, blogs, portals or
wikis [Del07]. They all help to organize content in various ways and there are several
requirements that all of them should meet [GN02]:

• Separation of content and presentation. Design templates or theming layers
determine the layout and the appearance of the content. Multi-format content
allows multilingual sites or adoption to mobile phones and PDAs.

• Users, roles and permissions. People interacting with the system must be autho-
rized accordingly. Roles and permissions ensure a fine grained security policy.

• Context awareness. Content is personalized to the acting user and their prede-
fined settings (e.g. browser version, previously visited pages, user preferences
etc.).

• Business processes and workflows. Collaboration and interaction activities re-
quire coordination and management processes that can be automated and enforced
by the system.

• Extensibility. The CMS must provide a comprehensive API and software module
facility to allow developers to alter and extend the behavior of the system.

Most CMS have a database oriented architecture where content and settings are
stored. They are often implemented in scripting languages and rely on a web server
that delivers the dynamically created web pages. Popular systems written in PHP are
Drupal3, Wordpress4, Joomla!5 and TYPO36, a CMS written in Python is Plone7.

3Drupal: http://drupal.org
4Wordpress: http://wordpress.org
5Joomla!: http://www.joomla.org
6TYPO3: http://typo3.org.
7Plone: http://plone.org

http://drupal.org
http://wordpress.org
http://www.joomla.org
http://typo3.org
http://plone.org

CHAPTER 2. FOUNDATIONS 21

2.5 Drupal
In this section I will introduce Drupal and the ecosystem around it, which is necessary
to understand the developments that base upon them. Here is a brief description of what
Drupal is [VW07]:

Drupal is used to build web sites. It’s a highly modular, open source web
content management framework with an emphasis on collaboration. It is
extensible, standards-compliant, and strives for clean code and a small
footprint. Drupal ships with basic core functionality, and additional func-
tionality is gained by the installation of modules. Drupal is designed to be
customized, but customization is done by overriding the core or by adding
modules, not by modifying the code in the core. It also successfully sepa-
rates content management from content presentation.

Drupal is written in the scripting language PHP and makes use of procedural and
object-oriented programming paradigms. It is developed as free and open source soft-
ware by several thousand collaborating contributers world wide. Currently Drupal ver-
sion 7 is being worked on, which will be the basis for the implementations introduced
in this thesis. Drupal gained popularity because of its extensibility, scalability and flex-
ibility and powers over 1% of all Internet web sites8. There are big sites among them,
e.g. from IBM, NASA, Yahoo, Sony, MTV and Whitehouse.gov [Zie10].

Drupal core architecture
Drupal is a set of PHP scripts and bases on several underlying technologies outlined in
figure 2.8. Drupal’s core architecture is composed of a library of common functions and
several core modules. This includes components for user management, session manage-
ment, a URL and menu system, logging, localization (internationalization), templating
(theming), a form system, basic content management and more [VW07]. There are fur-
ther core modules that provide additional features on top of that basic functionality, e.g.
user profiles or RSS feeds.

Modules are a central concept of extensibility in Drupal. They wrap certain features
and interact with the core via API functions and the hook system. Hooks allow modules
to take part in the data and control flow of Drupal core, e.g. modules can manipulate
variables, add information or trigger other activities. A module can register to a hook
by implementing a function with a certain naming scheme, so that this function is called
when Drupal core invokes the hook. This architectural style can be seen as some sort of
aspect-oriented programming; more details on concepts and Drupal programming styles

8Usage of content management systems for websites: http://w3techs.com/technologies/
overview/content_management/all

http://w3techs.com/technologies/overview/content_management/all
http://w3techs.com/technologies/overview/content_management/all

CHAPTER 2. FOUNDATIONS 22

Linux / Unix / BSD / Mac OS X / Windows ...

Apache / IIS / nginx / lighttpd ...

MySQL / PostgreSQL / SQLite ...

Database Abstraction Layer (PDO)

PHP

Language

Database

Web Server

Operating System

Figure 2.8: Drupal’s technology stack [VW07]

can be found on drupal.org [dc09]. Currently there are over 6,000 contributed modules
hosted on drupal.org9 that extend the features of Drupal.

Besides hooks there are other “Drupalisms” that are important to understand how
Drupal works. Configuration information is often organized in nested PHP arrays, a
flexible and high-performance data structure. However, this has the disadvantage of a
error-prone description, as syntactic mistakes in array keys often go unnoticed. Call-
backs are function name strings that are stored as values in configuration arrays and are
used to dynamically invoke functions when the array is processed. These arrays are also
used as renderables, i.e. to represent form structures that are later rendered to XHTML.
Jeff Eaton gave a good introduction to Drupal internals from an architect’s point of view
at Drupalcon San Francisco10.

Content is often referred to as nodes in the technical Drupal vocabulary. Nodes
represent the basic building block of a Drupal site, e.g. nodes are blog posts, pages or
articles. Comments, files, ratings etc. can be attached to nodes [Zie10].

9Drupal contrib modules: http://drupal.org/project/modules
10How Drupal Works: An Architect’s Overview: http://sf2010.drupal.org/conference/

sessions/how-drupal-works-architects-overview

http://drupal.org/project/modules
 http://sf2010.drupal.org/conference/sessions/how-drupal-works-architects-overvie w
 http://sf2010.drupal.org/conference/sessions/how-drupal-works-architects-overvie w

CHAPTER 2. FOUNDATIONS 23

Entities and Fields
Entities are a new concept in Drupal 7 that aim to replace nodes as the generic content
and data container. Thereby entities unify nodes, users, comments, profiles etc. as one
common abstract representation. This allows modules to implement features only once
for entities, which then applies to all kind of entity types (nodes, users etc.). Therefore
entities are a powerful tool to even support future (yet unknown) entity types, instead
of tying the module functionality to nodes only. “As example consider a rating module:
Built upon the concept of entities users could utilize it to allow rating nodes, comments,
taxonomy terms or even other users” [Zie10].

Fields are also a new development in Drupal 7 that derives from the contributed
module Content Construction Kit11 (CCK) in Drupal 6, which allowed to attach fields
to nodes. Nodes have basic fields such as a title and a body, whereas CCK fields are
additional custom properties, such as e.g. a date information or an image field. Those
fields are configurable per content type, so that it is possible to build different content
configurations with different data properties. However, in Drupal 7 this functionality
has been reworked to a Drupal core module that not only equips nodes with fields but
entities as well. This empowers site builders to assign fields to various entity types, so
that data properties can be easily attached to nodes, users, comments, taxonomy terms
etc. Fields can be configured not only per entity type, but also per bundle. A bundle can
be described as one set of fields for a certain entity type [Zie10] [N+10]. An example
would be the profile entity type, where one bundle is a user profile and a second bundle
is a company profile, both with different fields.

Entity API and Entity Metadata

The API support for entities is very basic in Drupal core, so there is the Entity project12

in the contributed section of drupal.org to leverage advanced aspects of entities. It con-
sists of two major features, the Entity CRUD API and the Entity Metadata abstraction.
The first one provides a class for full CRUD (Create Read Update Delete) support for
entities and an extended controller class for additional needs as mass loading or dele-
tion. The second one deals with describing entity properties as metadata by providing a
uniform interface that exposes properties, fields and entity references of an entity type.
Thus it is very useful for entity type agnostic modules that can make use of the meta-
data annotations to deal efficiently with arbitrary entity types. This means that “any
module providing an entity would have to provide metadata only once to be integrated
with all modules building upon the uniform interface” [Zie10]. The project was started
and mainly developed by Wolfgang Ziegler to satisfy the need of data abstraction for
the Rules module (see the next subsection).

11Content Constrction Kit: http://drupal.org/project/cck
12Entity project: http://drupal.org/project/entity

http://drupal.org/project/cck
http://drupal.org/project/entity

CHAPTER 2. FOUNDATIONS 24

Acting user
Notify the content author

about the update

Action

Event

Content has
been updated

generate fire

The content author is
different to the acting user

Condition

trigger

Figure 2.9: An Event-Condition-Action rule that reacts when a user updates a node to
notify the node author [Z+10a]

Rules
The Rules module13 is a workflow system for Drupal that allows site builders to eas-
ily define custom activities. It bases on the concept of Event-Condition-Action rules,
where on the occurrence of a predefined event one or more conditions are evaluated and
upon success one or more actions are executed. They are also called reactive rules and
figure 2.9 shows an example flow in Drupal. The Rules module offers a wide range
of events, conditions and action so that very many combinations of them can be used
for flexible workflow building. This enables site builders to automate a lot of regular
tasks without any programming effort – just by configuring rules accordingly. Rules can
also be attached to more than one event and rules can be bundled in reusable rule sets.
Those rule sets can then be executed as an action from another rule. Other supportive
features around Rules include exportable configurations to copy/share rules, scheduling
of rules to postpone execution and a modular design to allow Rules integration from
other modules [Zie10] [Z+10a].

A major aspect of Rules is handling data that is shared between events, conditions
and actions. Data is stored in variables that can be provided by events and actions, for
example the “Content has been updated” event provides a node object. Version 2 of
Rules relies therefore on the Entity Metadata module to offer so called data selectors
for direct access to entity properties and relationships to other entities. This means that
for example the name of the author of a node can be accessed by a chained selection
from the node entity onwards to the user entity to the name property. Additionally
Entity Metadata enables Rules to provide generic entity conditions and actions, such as
for example creating, loading or deleting entities, which can be applied to any kind of

13Rules module: http://drupal.org/project/rules

http://drupal.org/project/rules

CHAPTER 2. FOUNDATIONS 25

entity type. Furthermore there is support for data lists and looping over them to execute
an action for each item of the list [Zie10].

Rules Web
Wolfgang Ziegler has developed support for distributed rules in his master thesis pub-
lished as Rules Web project on Github14 [Zie10]. It includes so-called Rules Web Hooks
that specify remote events for Rules, so that occurring events can be passed to other Dru-
pal sites. This is realized via a notification system, where the source Drupal site exposes
a remote event and other sites can subscribe to it. When the event is triggered all sub-
scribed sites are informed and receive the event information (and possible data variables
as payload). On the receiver site rules can be configured to process the remote event and
to react with follow-up actions. All communication is done via HTTP requests and re-
sponses, remote event providers make use of the Services module15 to expose remote
events and subscribers use the REST client module by Hugo Wetterberg16 to subscribe
to an event.

This system is build on the concept of remote proxies that form an abstraction layer
for different kinds of remote systems (see figure 2.10). Rules Web Hooks represent one
remote proxy (one endpoint type); there are other endpoint types in the Rules Usecases
project17 to also support REST and SOAP services. Service invocations are integrated as
Rules actions and require a service definition in code to describe operations, parameters,
returned variables and other settings. Communication with SOAP services is achieved
by using the PHP SOAP extension18, RESTful services are accessed with the help of
the REST client module by Hugo Wetterberg. As a result it is possible to invoke web
services with Rules now, but the module lacks an administration user interface and it
has not been published to drupal.org (it can be seen as an experimental proof of concept
module).

14Rules Web: http://github.com/fago/rules_web
15Services module: http://drupal.org/project/services
16REST client module (renamed to HTTP client): http://github.com/hugowetterberg/http_

client
17Rules Usecases: http://github.com/fago/rules_usecases
18PHP SOAP extension: http://php.net/manual/en/book.soap.php

http://github.com/fago/rules_web
http://drupal.org/project/services
http://github.com/hugowetterberg/http_client
http://github.com/hugowetterberg/http_client
http://github.com/fago/rules_usecases
http://php.net/manual/en/book.soap.php

CHAPTER 2. FOUNDATIONS 26

Modules

Rules module

Metadata

Entities

Rules
Remote
Proxy

Remote
Systems

Figure 2.10: Module architecture of Rules Web. “A remote proxy may provide new
entities, metadata as well as events, conditions and actions to the system.” [Zie10]

Chapter 3
Objectives

The philosophers have only interpreted the world, in various ways. The
point, however, is to change it.
– Karl Marx

This chapter layouts some finer grained objectives that form the goal and purpose of
this thesis. I will describe properties and requirements that the developed system should
achieve.

3.1 Web service client module
In order to efficiently deal with web services we need to wrap all functionality in a
Drupal module. This module shall act as a web service client and shall manage the
communication with different service types. SOAP and REST service types should
be both supported by the module, which should provide an abstraction mechanism to
allow an easy integration of other service types. The design of the module should take
extensibility into account and should provide a decent developer API so that Drupal
programmers can easily use a high level web service interface.

The work from Wolfgang Ziegler on Rules Web (see section 2.5) should be analyzed,
extended and embraced to enhance the existing approach. The improvements should
result in a finalized package published on drupal.org that is compatible to the upcoming
Drupal 7 release. Rules Web Hooks shall be adapted to base on this new module and
should be packaged for drupal.org as well.

27

CHAPTER 3. OBJECTIVES 28

3.2 Web service composition with Rules
Another major requirement is to consider the invocation of multiple web services in one
workflow. Thus the planned web service client module should not only account for sin-
gle, separated service operations, but for a composed usage of services. The aim is to
leverage the Rules module (see section 2.5), which already provides workflow features
and a “Rules language” to handle variables and data types between events, conditions
and actions. When we manage to express web service invocations as Rules actions and
provide mapping of different data structures between that actions, we should get a de-
cent system to arrange multiple web services. The goal is to get a somewhat similar
functionality compared to WS-BPEL (see section 2.3), so that a rule represents a pro-
cess with service invocations, data assignments, loops and so on. Of course Rules is
more limited in its language constructs and does not reach the richness of WS-BPEL
or EMML (Enterprise Mashup Markup Language [All09]), but it should suffice to sat-
isfy the basic needs of service composition. Furthermore it should keep creation and
management of workflows simple and usable.

3.3 An automatic translation use case
The practical use case of the web service client module should be an automatic transla-
tion workflow use case. Several translation web services shall be used to acquire English
translation suggestions for German terms in a Drupal taxonomy vocabulary. That sug-
gestions shall then be forwarded to a machine learning component by communicating
via a web service interface. The machine learning component then ranks the translations
according to their relevance and returns the score as result of the web service call. The
translations shall be stored with the score in a new vocabulary that is ready for human
examination to finally select the correct translation. This workflow is comprised of mul-
tiple web service invocations that shall ensure the correct behavior of the web service
client module. Figure 3.1 shows the web service calls that are necessary for this task.
Chapter 5 describes the use case in detail.

3.4 Web service integration without programming
effort

Handling external web services was most often connected to some development effort
in order to accomplish service invocations. The developed web service client module
should make it possible to administer web services without any programming effort.
This requires an administrative user interface in Drupal to create, lookup, update and
delete web service descriptions that are used to communicate with the actual services.

CHAPTER 3. OBJECTIVES 29

Drupal + Web
service client

module

Translation web
service

Machine
learning web

service

Figure 3.1: Service invocations in the automatic translation use case.

In conjunction with the Rules module and the provided Rules integration it should allow
a complete configuration of web services in the Drupal administration user interfaces.
However, basic knowledge of web services, operations and the involved data structures
will still be needed in order to understand and configure the services correctly. A major
difficulty in this regard is the graphical specification of complex data types that may be
needed for a service, which should be resolved as well.

3.5 Automatic WSDL parsing
SOAP services provide a WSDL description in most cases (see section 2.2) which can
be used to obtain metadata like operations and involved data types from the service.
Service consumers can therefore dynamically configure their binding to the service by
extracting the required information from the WSDL description. Concerning the web
service client module this means that the manual specification of operations, data types,
binding etc. is not needed for SOAP services as long as there is a WSDL description
available. The module should provide a way to let users specify the location of a WSDL
description and then generate the internal service information automatically. That re-
duces the configuration of a SOAP service to a minimum and is less error-prone than
manually entering operations or data types.

3.6 Sharing of exportable web service descriptions
A web service description that is created on the platform should be exportable so that
it can be easily transfered to other Drupal sites. This process requires a serialization of
the descriptions to a structured string format. The format should be human-readable as
well, so that it can be managed in revision control systems in a meaningful way. As
a result it should be possible to share web service descriptions across system borders
and to publish those descriptions in repositories or other online resources. The export

CHAPTER 3. OBJECTIVES 30

functionality requires a mirrored import functionality that is capable of restoring the
original description from flattened export string. Furthermore it is important to install
a decent dependency resolution mechanism in case that service descriptions share data
types, so that the dependencies are exported as well.

Chapter 4
Realization

Developers, developers, developers, developers, developers, developers!
Developers, developers, developers, developers, developers, developers!
– Steve Ballmer at a developers’ conference1

Now that we have some basic foundations (see chapter 2) and defined the scope and
objectives (see chapter 3), we go into the concrete realization. This chapter consists of
analysis, the system architecture considerations and some details on the implementation.
The source code that was developed during this thesis can be found as web service client
project on drupal.org2.

4.1 Analysis
At the heart of the planned module are web services, so we need to consider how we
will abstract and represent them in a way that they fit into existing Drupal and PHP
facilities, as well as the Rules module (see section 2.5) environment.

Web service model
Support for SOAP, RESTful and REST-RPC hybrid services is required, which means
that we need to specify common service properties that apply to all service types. How-
ever, different service types may require additional settings to properly describe how the
service can be used. This leads to an abstract, basic and generic service description that
is extensible per service type and also allows possible future service types that do not
exist yet.

1YouTube video: http://www.youtube.com/watch?v=8To-6VIJZRE
2Web service client: http://drupal.org/project/wsclient

31

http://www.youtube.com/watch?v=8To-6VIJZRE
http://drupal.org/project/wsclient

CHAPTER 4. REALIZATION 32

We can define that each web service has the following properties that are necessary
to establish successful connections:

• Name and Label: A machine-readable name identifies the web service description
internally and a human-readable label briefly describes the service.

• Type: The type of the web service determines how the service must be used and
which type of implementation (endpoint) will handle the communication. This is
REST or SOAP in our implementation.

• URL: Each service has a base URL that is used either directly for communica-
tion (in the case of a RESTful service) or as pointer to a document that formally
describes the service (in the case of a SOAP service this would be the WSDL file).

• Operations: We can define that every web service has operations. This applies
naturally to SOAP services and REST-RPC hybrids, but also applies to strict
RESTful services by considering the four standard CRUD methods that form op-
erations as well (see also section 2.3 for a similar example of modeling strict
RESTful service operations in WSDL 2.0). An operation can have an arbitrary
number of parameters and optionally a result.

• Data types: A service may deal with complex data types that are used as parame-
ters or result types in an operation. They are described by a name and properties
that are primitive or complex data types themselves.

• Settings: Depending on the type, a service may need to store additional endpoint
type-specific settings (e.g. authorization credentials or data formatting details).

While name, label, type and URL are simple properties of a service description, op-
erations, data types and settings are collections of complex structures. In the tradition
of Drupal and PHP we organize complex data sets in associative array structures, that
are easy to access in the programming language and run fast during program execution
(see also section 2.5). Figure 4.1 visualizes the information structure of a web service
description. Green properties are primitive fields, red properties are collections of com-
plex structures and purple properties refer to other complex structures. Arrows represent
references and the dashed line for variable types states that it may also be a primitive
type, which does not need an explicit definition.

Depending on the endpoint type, the information structure of a web service de-
scription can be extended to store additional properties that are necessary to invoke the
operations. For example in case of the REST endpoint a URL suffix may be needed for
a specific operation.

Listing 4.1 is an example for the structure of a web service description, in this case
a REST-RPC hybrid service with one operation (“translate”). Operation and data type

CHAPTER 4. REALIZATION 33

Name

Label

URL

Type

Web service description Operation

Name

Parameters

Result

Operations

Data Types

Settings

Data type

Name

Properties

Variable

Name

Type

Figure 4.1: Information structure of a web service description.

information is provided in nested properties and contains details about the data format;
it specifies how and what can be exchanged with the service.

<wsclient_service>
<name>google</name>
<label>Google Ajax APIs</label>
<url>http://ajax.googleapis.com/ajax/services/</url>
<operations>
<translate>
<label>Translate text</label>
<url>language/translate</url>
<parameter>
<q>
<type>text</type>
<label>Text</label>

</q>
<!-- ... other parameters ommitted here ... -->

</parameter>
<result>
<type>translation_result</type>
<label>Translation result</label>

CHAPTER 4. REALIZATION 34

</result>
</translate>

</operations>
<datatypes>
<translation_result>
<label>Translation result</label>
<property_info>
<responseData>
<type>struct</type>
<label>Response data</label>
<property_info>
<translatedText>
<type>text</type>
<label>Translated text</label>

</translatedText>
</property_info>

</responseData>
</property_info>

</translation_result>
</datatypes>
<type>rest</type>
<settings />

</wsclient_service>

Listing 4.1: Example web service description represented in XML.

SOAP service layer
Because SOAP is a widely implemented protocol, we do not want to re-invent the wheel
ourselves but use a software library for PHP. It should be capable of creating and ex-
changing SOAP messages as well as reading WSDL files to provide an abstraction layer
on the actual operations and endpoints. There are two libraries for PHP that seem to be
actively developed and to fulfill the requirements, one is NuSOAP3 and the other is PHP
SOAP4. As PHP SOAP is part of the official PHP distribution and is included in most
PHP server installs, it is reasonable to choose this extension because of the larger user
base.

PHP SOAP comes with a SOAPClient class that allows accessing SOAP services
in an object-oriented way. It offers a constructor with an option to specify a URL to
a WSDL file, which is then downloaded and processed. The web service operations
are mapped dynamically to object methods, so that they can be invoked easily from the
SOAPClient object. A usage example is given in listing 4.2, where the Geocoder.us
SOAP service is used to retrieve the zip code of a given address.

3NuSOAP PHP library: http://nusoap.sourceforge.net/
4PHP SOAP extension: http://php.net/manual/en/book.soap.php

http://nusoap.sourceforge.net/
http://php.net/manual/en/book.soap.php

CHAPTER 4. REALIZATION 35

// Create new SOAPClient instance with metadata from the WSDL
file.

$service = new SOAPClient(’http://geocoder.us/dist/eg/clients
/GeoCoderPHP.wsdl’);

$result = $service ->geocode_address(’1600 Pennsylvania Av,
Washington , DC’);

$zip_code = $result[0]->zip;
// $zip_code is now 20502

Listing 4.2: Invoking a web service with PHP SOAP.

Although the SOAP extension works fine in most cases, it has some limitations.
WSDL is only supported in version 1.1, which is not a big issue as version 2.0 is rarely
used nowadays. Also the Document/wrapped operation parameter convention is not
supported, where all parameters are automatically wrapped into one complex operation
parameter that has the same name as the operation [AAM06]. Thus programmers cannot
pass the parameters one by one to the SOAPClient method, but need to put them into
a wrapping array data structure themselves, which is then the single parameter for the
method. This is inconsistent and confusing for developers that are used to work with
other common frameworks where the wrapping is hidden and automatically done.

RESTful service layer
RESTful services are somewhat easier to access, as they do not need such a sophis-
ticated data encapsulation like SOAP envelopes. Nevertheless we need a library that
supports different payload formats (commonly XML and JSON) and that provides an
API to make use of the different HTTP request methods (GET, POST, PUT, DELETE).
Drupal itself offers the drupal_http_request() 5 function for simple remote calls,
but it does not support all HTTP request types and it lacks a proper exception handling
in case of errors. A more advanced approach is implemented by the HTTP client mod-
ule6 that contains a HTTPClient class for object-oriented use with RESTful services.
Additionally it offers support for various data formats that are wrapped implicitly, all
HTTP request types, authentication mechanisms, exception handling and it is flexible
for adjustments and extensions.

Listing 4.3 gives an example of using the HTTP client module for translating a
German word to English with the Google translation service.

// Prepare a JSON formatter

5API for drupal_http_request() :
http://api.drupal.org/api/drupal/includes--common.inc/function/drupal_http_
request/7

6HTTP client module: http://drupal.org/project/http_client

 http://api.drupal.org/api/drupal/includes--common.inc/function/drupal_http_reque st/7
 http://api.drupal.org/api/drupal/includes--common.inc/function/drupal_http_reque st/7
http://drupal.org/project/http_client

CHAPTER 4. REALIZATION 36

$formatter = new HttpClientBaseFormatter(
HttpClientBaseFormatter::FORMAT_JSON);

$service = new HTTPClient(NULL, $formatter);
// Translate the german word "Schule" to English
$parameters = array(
’q’ => ’Schule’,
’langpair’ => ’de|en’,
’v’ => ’1.0’,

);
// Invoke a HTTP GET request.
$result = $service ->get(’http://ajax.googleapis.com/ajax/
services/language/translate’, $parameters);

$translation = $result[’responseData’][’translatedText’];
// $translation contains now "School"

Listing 4.3: Invoking a RESTful service with the HTTP client module.

Complex web service data types
Web service operations that make use of primitive data types in their parameters and
return values are relatively easy to handle – the type information is implicitly available,
which is important for preparing service input variables and for further processing of
service output variables. In case of complex data types that are required for the service
operation, we need metadata about the type and its properties. This is not only required
to embed the service in the system, but also for Web Service Composition (see chap-
ter 2.3) where data types have to be transformed or adapted between different services.

For our goal of integrating web services with Rules we need to consider the already
existing data type system of Rules and Entity Metadata. It takes into account high level
Drupal entities such as nodes, users, comments etc. but also other data structures that
can be defined by third party modules. The challenge is to map data type expectations
from web services to the type system in Rules, so that we can seamlessly transfer data or
data properties between the workflow components. SOAP services most often include
XML schema definitions (XSD) about the complex data types in their WSDL file, which
can be extracted and mapped automatically in most cases. RESTful service data types
on the other hand are almost never described in machine processable formats [Gre07],
but rather specified informally on the service provider’s web page or in other casual
ways. This leads to the requirement of letting users (site builders that integrate the
service) specify complex data types with their properties, so that Rules knows about the
metadata and can supply that information when building workflows with web services.

CHAPTER 4. REALIZATION 37

Import/Export format
An established web service description on one Drupal site is most probably interest-
ing for other sites as well, so that they do not need to create such a description them-
selves, but simply reuse the existing configuration to connect to the web service. Sharing
of configurations is accomplished by many Drupal modules through serialization to a
string that contains executable PHP code. Although this is easy and straight forward, it
imposes a major security risk to every Drupal site. Potentially arbitrary PHP code can
come with a malicious configuration import which is then executed. Even if the permis-
sion to import web service descriptions is restricted to site administrators that should
know what they are importing, a security risk still remains. So the serialization to PHP
code does not satisfy the security requirements and is therefore off the table as option
for an export format.

Another possibility is to use the existing web service description standards, e.g.
WSDL or WADL. As stated in chapter 2.2 WSDL 1.1 is not capable of describing REST-
ful services, so it will not fit to our needs. WADL is specifically targeted at RESTful
services, but it is not intended to describe SOAP services as well. WSDL 2.0 is techni-
cally capable of describing both service types, but it is not in wide spread use. However,
the biggest problem is the extensibility of the web service client module; new endpoint
types can be defined and additional settings can be stored. It seems difficult to anticipate
future developments and if they will fit into the structure WSDL or WADL with all their
properties.

This leads back to a custom format that is able to perfectly map all internal data
structures that comprise a web service description. The Rules module leverages JSON
as import/export format [Zie10] and it seems to be a viable solution in our case as
well. PHP and Drupal have built-in support for JSON, so the programming effort for
data conversion is kept to a minimum. JSON is also human-readable, lightweight and
resource-efficient when it is parsed [NPRI09].

Developer API
Programmers need a simple and concise way to make use of existing web service de-
scriptions, e.g. to issue web service invocations. The web service client module should
provide an abstraction layer so that developers need to know as little as possible about
the configuration in order to use it. This is especially important regarding the endpoint
type of a service, meaning that services can be used without knowing whether they are
RESTful or SOAP services. Listing 4.4 shows how a web service description object
is loaded and a web service operation is invoked by calling a method on that object.
Compared to listing 4.3 it does not require tedious setup routines anymore when us-
ing the service, because the settings were configured and stored with the web service
description before.

CHAPTER 4. REALIZATION 38

// Load the Google translation service
$service = wsclient_service_load(’google_translate’);
// Invoke the ’translate’ operation of the service
$result = $service ->translate(’Hallo Welt’, ’de|en’);
$translation = $result[’responseData’][’translatedText’];
// $translation contains now "hello world"

Listing 4.4: Loading a web service description and executing a web service operation.

Web service composition
For the realization of complex workflows that contain several web service invocations,
we could develop our own workflow system that is capable of composing multiple web
services. However, this seems to be a big task and would probably duplicate a lot
of code that already exists in the Rules module, a workflow system in Drupal. The
execution of a rule is triggered by an event, then conditions are evaluated and upon
success actions are executed. Obviously we need to provide an integration to the Rules
module, so that (multiple) web services can be used in a Rules configuration. Therefore
some considerations:

1. Invoking a web service operation is a Rules action.

2. Preparing complex data structures as web service operation parameters is done as
a “create data structure” Rules action beforehand.

3. A rule can contain an arbitrary amount of actions, also multiple web service in-
vocation actions. Data that needs to be passed between services can be mapped
with new data structures and “create data structure” Rules actions.

The arrangement of such actions is shown in figure 4.2 where some example invo-
cations and data structure creations are carried out in the action block of a rule.

With this basic concept we can accomplish web service composition within Rules
workflows and get additional features of the Rules language (e.g. loops, rule scheduling,
rule sets, other plugins etc.) for free.

4.2 Architecture
For the realization of the web service client module we consider the following architec-
tural conditions that will help us with a clean and elegant implementation style:

• Object-oriented programming: We will leverage PHP language features such as
classes, interfaces and inheritance to make the implementation modular, coherent
and extensible.

CHAPTER 4. REALIZATION 39

Conditions

Event

Action: Invoke web service X with primitive arguments

Action: Create data structure A from the results of X

Action: Invoke web service Y with argument A

Action: Invoke web service Z with arguments B, C, A

Action: Create data structure B from the results of Y

Action: Create data structure C with fixed values

...

Actions

Figure 4.2: Web service composition in Rules with actions for invocation and data struc-
ture creation.

CHAPTER 4. REALIZATION 40

• Drupal Entities: Drupal 7 and the Entity API module offer a system to handle
common storage operations (CRUD) and generic integration with other subsys-
tems and modules (see chapter 2.5). We will define web service descriptions as
entities, so that we benefit from an already existing abstraction layer that reduces
development effort.

• Modularity: The usage of the web service client module may depend on the use
case, e.g. some sites will only use it in form of a code dependency to another
module, while others will need the full administration user interface. The func-
tionalities of the module will be wrapped into submodules, so that the required
code base is minimized if not all features are used.

• Automated tests: Drupal 7 also provides a unit testing framework called Sim-
pleTest7 that allows modules to implement test cases that verify the functionality
of the module. This aspect does not strictly belong to the architecture, but will
contribute to an improved and sustainable code base.

To realize the modularity, we decouple the whole web service client package into
four Drupal modules.

1. wsclient : This is the core web service client module that implements the basic
features to deal with web service descriptions. It provides integration with the
Entity API module, the Rules module and the Features module (export, see sec-
tion 4.3). It does only provide an abstract endpoint class, concrete service adapters
(i.e. for SOAP and REST services) are separated into their own modules. A de-
pendency to the Entity API module is necessary.

2. wsclient_soap : This module realizes the back end for SOAP services by
providing a SOAP endpoint. It also handles the import web service descriptions
from WSDL files and it depends on the wsclient module.

3. wsclient_rest : Also the endpoint for RESTful services is factored out to a
separate module and also depends on the wsclient module.

4. wsclient_ui : The whole administration user interface is also located in its
own module, so that the UI code is not loaded when only the developer API is
required. Besides the dependency to the wsclient module it also depends on
the Rules module, because it uses some Rules API functions.

Figure 4.3 illustrates the module structure and also shows the dependencies between
them (solid arrows). Dashed arrows indicate no hard dependency but an optional inte-
gration if the referenced module is available in the system. Web service client modules

7Drupal’s SimpleTest framework: http://drupal.org/simpletest

http://drupal.org/simpletest

CHAPTER 4. REALIZATION 41

wsclient

wsclient_ui wsclient_rest wsclient_soap

rules featuresentity

Figure 4.3: Web service client modules and their dependencies to other modules.

are marked as light blue and other external Drupal modules are marked as light yellow.

Figure 4.4 shows the structure of the core classes used in the web service client
package (only the most important attributes and methods are outlined for the sake of
simplicity and to give an overview). The WSClientServiceDescription class is at
the center of the implementation and holds all information pieces that fully describe a
web service (see also figure 4.1). It is derived from the Entity class which is provided
by the Entity API module and which provides useful storage operations like save()
and delete() . WSClientServiceDescription also implements the magic PHP
method __call that catches all calls to not existing methods, so that a service operation
can be directly invoked as method on the object (see listing 4.4 for an example).

The endpoint of a web service description is an important attribute that is determined
by the type of the service (SOAP or REST in our case). For compatibility reasons, an
endpoint has to implement the WSClientEndpointInterface ; the most important
method of the interface is call() , which is executed when an operation is invoked
on the web service (i.e. the invoke() method of WSClientServiceDescription
is called). The endpoint is responsible to handle the communication with the actual
web service and to return a possible result. The abstract class WSClientEndpoint
implements common functionality that is shared between WSClientSOAPEndpoint
and WSClientRESTEndpoint . Both subclasses implement a client() method that
constructs the underlying library to access the web service (i.e. a SOAPClient or a
HTTPClient instance). Of course both classes also implement the call() method to
invoke a service operation.

CHAPTER 4. REALIZATION 42

Figure 4.4: Class diagram of the web service client module.

Web Service descriptions as entities
The decision to use Drupal entities as framework for the web service descriptions is an
important one – we need to store custom data (the web service descriptions) and want to
access it in a standardized and simple way. Entities are a new concept in Drupal 7 and
provide the facilities to easily integrate custom data structures in Drupal. The Entity API
module extends the Drupal core entity features and helps to leverage the full potential
of entities. This approach can be seen as an object-oriented mapping, where objects
hold the data during program execution and a relational database retains the data for
persistence. The mapping between objects and the database is carried out by the Drupal
entity system.

To expose the web service descriptions as entities, we need to implement the fol-
lowing parts in our wsclient module:

CHAPTER 4. REALIZATION 43

• hook_schema() : This hook is located in the installation file of the module
(wsclient.install) and specifies the database table and the database fields where
the web service descriptions will be stored. It is invoked when the module is
installed and creates the table in the database (see listing 4.5.

function wsclient_schema() {
$schema[’wsclient_service’] = array(
’fields’ => array(
’id’ => array(
’type’ => ’serial’,
’not null’ => TRUE,
’description’ => ’The primary identifier for the
web service.’,

),
’name’ => array(
’type’ => ’varchar’,
’length’ => ’32’,
’not null’ => TRUE,
’description’ => ’The name of the web service.’,

),
’label’ => array(
’type’ => ’varchar’,
’length’ => ’255’,
’not null’ => TRUE,
’description’ => ’The label of the web service.’,

),
’url’ => array(
’type’ => ’varchar’,
’length’ => ’255’,
’not null’ => TRUE,
’description’ => ’The url of the web service.’,

),
’operations’ => array(
’type’ => ’text’,
’not null’ => FALSE,
’serialize’ => TRUE,
’description’ => ’The operations this web service

offers.’,
),
’datatypes’ => array(
’type’ => ’text’,
’not null’ => FALSE,
’serialize’ => TRUE,
’description’ => ’The complex data types used in
the operations.’,

),
’type’ => array(
’type’ => ’varchar’,

CHAPTER 4. REALIZATION 44

’length’ => ’255’,
’not null’ => TRUE,
’description’ => ’The type of the remote endpoint
.’,

),
’settings’ => array(
’type’ => ’text’,
’not null’ => FALSE,
’serialize’ => TRUE,
’description’ => ’The endpoint type specific
settings.’,

),
’authentication’ => array(
’type’ => ’text’,
’not null’ => FALSE,
’serialize’ => TRUE,
’description’ => ’Data describing the
authentication method.’,

),
) + entity_exportable_schema_fields(),
’primary key’ => array(’id’),
’unique keys’ => array(
’name’ => array(’name’),

),
);
// Other secondary definitions ommitted here.
return $schema;

}

Listing 4.5: Implementation of hook_schema() in the wsclient module.

• hook_entity_info() : Another hook that informs the system of the new web
service description entity. It contains a pointer to the class that represents the
entity, the name of the database table where it will be stored (the one described
in the installation file), which properties are used to identify the entity and other
details that are relevant for the system to fully recognize the entity (see listing 4.6).

function wsclient_entity_info() {
return array(
’wsclient_service’ => array(
’label’ => t(’Web service description’),
’entity class’ => ’WSClientServiceDescription’,
’controller class’ => ’EntityAPIController’,
’base table’ => ’wsclient_service’,
’module’ => ’wsclient’,
’fieldable’ => TRUE,
’entity keys’ => array(

CHAPTER 4. REALIZATION 45

’id’ => ’id’,
’name’ => ’name’,
’label’ => ’label’,

),
’exportable’ => TRUE,
’access callback’ => ’wsclient_entity_access’,
’features controller class’ => ’
WSClientFeaturesController’,

),
);

}

Listing 4.6: Implementation of hook_entity_info() in the wsclient module.

• WSClientServiceDescription : This is the class that extends the Entity base
class and that is referenced in the entity info hook. It defines attributes that cor-
respond to the database fields specified in the database schema. The attributes
(properties) are mapped automatically to the database fields when entities are cre-
ated, read, updated or deleted (CRUD). Of course the attribute data types used in
an entity object need to match the types defined in the database schema, otherwise
database exceptions will occur at runtime (the correctness of the mappings is not
enforced).

As a result web service descriptions can be handled in an easy, object-oriented way,
without worrying about how to access the database. Listing 4.7 is an example of the
programmatic usage of web service descriptions in conjunction with CRUD operations.

// Create a web service description.
$service = new WSClientServiceDescription();
$service ->name = ’google_api’;
$service ->label = ’Google Ajax APIs’;
$service ->url = ’http://ajax.googleapis.com/ajax/services/’;
$service ->type = ’rest’;
// Save it to the database.
$service ->save();
// Read a service description from the database.
$service = wsclient_service_load(’google_api’);
// Update a service description.
$service ->label = ’Google Services’;
$service ->save();
// Delete a service description from the database.
$service ->delete();

Listing 4.7: Entity CRUD operations on a web service description object.

CHAPTER 4. REALIZATION 46

Endpoints
The web service client module is designed to support multiple endpoint back ends that
are some sort of plugins for various service types (e.g SOAP or RESTful services). As
already explained in section 4.2, an endpoint is a class that needs to implement the
WSClientEndpointInterface . Endpoints are registered with the wsclient module
by implementing hook_wsclient_endpoint_types() that specifies the endpoint
type name and the endpoint class. Currently we deal with three different endpoint types
(additional service types may arise in the future):

• WSClientSOAPEndpoint : Represents the connection layer to SOAP services
and uses the SOAPClient class from the PHP SOAP library for service calls.
This class also contains a method to parse WSDL files when a new SOAP service
description is initialized (see section 4.3).

• WSClientRESTEndpoint : Communicates with RESTful services by using the
HTTPClient class from the HTTPClient Drupal module. The implementation
currently only supports GET operations, but can be easily extended to support
others as well.

• RulesWebHooksEndpoint : This is the endpoint class to realize Rules Web
Hooks, which originates in the Rules Web module (see section 2.5) and which
is ported to be compatible with the wsclient module. It is bundled as new Rules
Web Hooks module8 and is used as subscription/notification system to exchange
remote Rules events.

Invoking web service operations
Figure 4.5 shows an example of the method call hierarchy that is executed when the
Google Translate service operation is invoked. First a dynamic translate method is called
on the web service description object, which is caught by the magic method handler
__call() . The method name is then passed as operation name to the invoke()
method, which checks if the operation exists and which maps the arguments to the
named parameters. Also a hidden parameter (the version information that is required by
the service) is added in this case. Next the endpoint interface is called, in this example
the concrete implementation is the REST endpoint. In the last step the endpoint applies
adjustments for the client library (i.e. the operation URL is looked up from the operation
name) and invokes the web service operation. Responses from the web service are
passed back up to the original operation caller.

8Rules Web Hooks: http://drupal.org/project/rules_web_hooks

http://drupal.org/project/rules_web_hooks

CHAPTER 4. REALIZATION 47

Drupal context
$service->translate('Hallo Welt', 'de|en');

WSClientServiceDescription
__call('translate', array('Hallo Welt', 'de|en'));

WSClientServiceDescription
invoke('translate', array('Hallo Welt', 'de|en'));

WSClientRESTEndpoint
call('translate', array('q' => 'Hallo Welt', 'langpair' => 'de|en', 'v' => '1.0'));

HTTPClient
get('http://ajax.googleapis.com/ajax/services/language/translate',

array('q' => 'Hallo Welt', 'langpair' => 'de|en', 'v' => '1.0'));

Figure 4.5: Method call hierarchy on a web service operation invocation.

4.3 Implementation
After reasoning in the analysis and architecture sections, this section will present details
about the implementation of the objectives (see chapter 3).

Rules integration and service composition
The Rules module (see section 2.5 for an introduction) allows other modules to integrate
their functionality within the Rules workflow system and the Rules language. For the
web service client module this means that two important things need to be exposed to
Rules: web service operations as Rules actions and complex web service data types,
because Rules needs to know how to access operation parameters and return variables.
There is online documentation for developers that explains in detail how Rules can be
extended and used [Z+10b]. The code that achieves the Rules integration lives in the file

CHAPTER 4. REALIZATION 48

wsclient.rules.inc which contains several hook implementations and functions
that are called from Rules:

• wsclient_rules_action_info() : This is a hook that returns information
about additional actions that should be made available to Rules. All web ser-
vice descriptions are loaded and all operations are mapped to action information
arrays. Parameters of an operation are described as parameters of the correspond-
ing action and result variables of an operation are specified as provided variables
of the action. Additionally the name of the web service and the operation name
are included as hidden parameters, because they are needed when the action is
executed in order to know which web service and which operation should be in-
voked.

• wsclient_rules_data_info() : Also an information hook that provides web
service specific data type details to Rules. This is relevant for services that deal
with complex and nested data structures, so that in Rules all properties are ac-
cessible within a data structure. All data types of all web service descriptions
are exposed to Rules. As a result complex data structures can be prepared to be
used as parameters for a web service operation or specific parts of a returned web
service result can be selected and processed in a Rules workflow.

• wsclient_service_action() : This function is registered as execution call-
back for all web service client actions. When a rule (or any other Rules compo-
nent) that contains a web service client action is evaluated, this function is called
to execute the web service operation. The arguments that are passed to this func-
tion contain the name of the web service description, the operation name and the
parameters that should be forwarded to the web service operation. The actual web
service invocation is carried out here and the response of the service is delivered
back to the execution context of the calling Rules configuration.

That is basically the implementation on the web service client module side; it en-
ables users/site administrators/developers to integrate web services in their Rules work-
flows. Another piece of development work has to be done on the Rules module side: a
“create data structure” action is missing, which is needed to produce complex operation
parameters. This action is not web service client specific, but may be needed by other
modules that deal with arbitrary data types as well. The implementation of this action
covers the following points:

• A new “creation callback” property is introduced for Rules data types, which is
the name of the function that will initialize the data structure upon creation. It is
needed because of different underlying data containers like arrays or PHP standard
class objects that have to be created differently.

CHAPTER 4. REALIZATION 49

• Action information has to be provided, i.e. the name “Create a data structure”,
a type parameter where all registered data types can be selected and the newly
provided variable that will contain the new data structure.

• An action process callback dynamically evaluates the selected data type and adds
all its type properties as parameters to the action configuration. Thus the static ac-
tion information is extended by the details of the data type and the type properties
are presented as input parameters to the action.

• Finally the action execution implementation invokes the type specific creation
callback an returns the resulting new data structure es provided variable.

The development issue for the “Create data structure” action can be found in the
Rules issue queue on drupal.org9. With that action in place, Rules is ready for basic
web service composition.

The data flow between services can be managed with another very useful tool: the
Rules data selector [Zie10]. When a Rules component (i.e. an action) is configured,
parameters can either be provided in a direct input mode (the plain value) or variables
available in the Rules configuration can be assigned with a data selector. This means
that a property of a provided variable (e.g. the output of an action/service operation) can
be mapped to a parameter of another action (e.g. the input of another service operation).
Data selectors can not only be applied to service data, but also to other Drupal entities
or data types. This also allows a convenient exchange of data between Drupal’s internal
structures (e.g. content/nodes, users or other entities) and web services.

To clarify the service composition, figure 4.6 shows an example of two web service
actions that are used in a Rules workflow. The rule is triggered on the event “after up-
dating existing content” and first executes an action to invoke the Twitter search web
service10 where the node title is passed as argument. The service returns a complex
data structure that contains a list of twitter messages and other useful data. A loop uses
that list to execute actions for each item. First, the message contents is transmitted to
the Google Translate service for translation to German. Second, the translation result
is displayed as system message for testing purposes. This workflow can be configured
completely in the administration user interface and does not require any programming
effort. Figure 4.7 is a screenshot of the configuration overview page that lists all com-
ponents (events, conditions, actions, loops, etc.) of this example rule.

Rules does not only provide an administrative user interface to compose rule config-
urations, but also a developer API that allows a programmatic setup. A similar example
rule (without the event) can be configured and executed from code as shown in list-
ing 4.8.

9Rules “create data structure” action development issue: http://drupal.org/node/849464
10Twitter search service: http://dev.twitter.com/doc/get/search

http://drupal.org/node/849464
http://dev.twitter.com/doc/get/search

CHAPTER 4. REALIZATION 50

Event
After updating existing content

provides: node (properties: title, body, author etc.)

parameter: node:title
provides: twitter_result (properties: list of results)

Loop (foreach)

Action:
Twitter search

Action:
Google Translate

parameter: twitter_result:results
provides: list-item

Action:
System message

parameter: list-item:text, langpair "en|de"
provides: translation (properties: responseData)

parameter: translation:responseData:translatedText
provides: -

Figure 4.6: Rules configuration example with two web service actions and the use of
data selectors to assign variables.

CHAPTER 4. REALIZATION 51

Figure 4.7: Screenshot of a rule configuration overview page with two web service
actions.

CHAPTER 4. REALIZATION 52

// Create a new rule that accepts a text parameter.
$rule = rule(array(’text’ => array(’type’ => ’text’)));
// Add the Twitter search web service action to the rule.
$rule->action(’wsclient_twitter_search_search’, array(

’param_q:select’ => ’text’,
’result:var’ => ’twitter_result’));

// Create a loop that iterates over the Twitter messages.
$loop = rules_loop(array(
’list:select’ => ’twitter_result:results’));

// Add the Google Translate web service action to the loop.
$loop->action(’wsclient_google_translate’, array(

’param_q:select’ => ’list-item:text’,
’param_langpair’ => ’en|de’,
’result:var’ => ’translation’))

->action(’drupal_message’, array(
’message:select’ =>
’translation:responseData:translatedText’));

// Add the loop the the rule.
$rule->action($loop);
// Execute the rule configuration with a text parameter.
$rule->execute(’Example title’);

Listing 4.8: A rule in code composing two web services by using the Rules developer
API.

Administration user interface
Objective 3.4 requires an administration user interface (UI) in Drupal to accomplish the
goal of a web service integration without programming effort. We aim to manage web
service descriptions by providing interactive pages and forms where service metadata
can be created and modified. Web service operations and data types can be configured
so that they are available to Rules or other modules that want to make use of them. All
user interface code will be separated out into a submodule (wsclient_ui), because
the UI may not be needed in all use cases. Other modules that depend on the web service
client module may not need the UI when they just make use of services internally.

Performing administrative configuration of Drupal entities (web service descriptions
in our case) can be considered a common use case in Drupal. Many Drupal modules
need to accomplish a similar task of managing entities in the UI; it seems to be reason-
able to share code that is the same among them. The idea is to build a generic entity
administration UI foundation in the Entity API module that modules can use, extend
and override for their entities. This was realized with the concept of a basic UI con-
troller class, that has default implementations for the menu system (URL paths to entity
UI pages), an overview table where all entities (e.g. web service descriptions) are listed

CHAPTER 4. REALIZATION 53

Figure 4.8: Screenshot of the web service client overview UI.

and simple forms to delete or import/export an entity. Complex forms like the entity edit
form are entity type dependent and have to be implemented by the third party modules
themselves. The documentation how modules can make use of the generic Entity UI
can be found on drupal.org11.

The web service client UI module provides a form to enter properties of the web ser-
vice description (e.g. a label or the URL) and sub-forms for data types and operations.
Figure 4.9 shows an example of such a web service description edit form. Figure 4.8 is
a screenshot of the overview page where all web service descriptions in the system are
listed. The implementation of these forms was relatively straight forward and consists
mainly of pure UI code – the transformation of form values to web service properties
was accomplished with the help of the Entity API in very few lines of code. Listing 4.9
shows this simplicity on the form submit function that leverages a convenient API func-
tion to map form values to entity object properties.

/**
* Submit callback of the web service description form.
*/
function wsclient_service_form_submit($form, &$form_state) {
$service = entity_ui_form_submit_build_entity($form,
$form_state);

$service ->save();
// ... further UI-specific code omitted here.

}

Listing 4.9: Submit callback for web service descriptions that leverages the Entity API.

11Making use of the Entity admin UI: http://drupal.org/node/1021576

http://drupal.org/node/1021576

CHAPTER 4. REALIZATION 54

Figure 4.9: Screenshot of the edit form of a web service description.

CHAPTER 4. REALIZATION 55

The form for operations of a web service allows users to enter the important opera-
tion name and an arbitrary number of parameters (plus their data type). If a parameter
should be a list of the selected type, it can be marked as “multiple”. A parameter is per
default required (on operation invocation a values has to be present for this parameter),
but can also be determined to be optional. A operation result type can be defined, but is
not mandatory (also has a “multiple” marker for lists).

There is also a form to enter custom data types that are complex data structures
with user-defined properties. They are needed when an operation requires more than a
primitive (e.g. a string or an integer) as parameter or result type. In the data type UI
form one can define the properties (i.e their name and data type). Data structures can
also be nested, so that a custom defined data type is used as property data type of another
custom defined data type. With this concept it is possible to specify arbitrary structures
with arbitrary property depth.

The UI forms introduced so far apply to all web service types, however endpoint
type providing modules can customize and extend that configuration forms. One exam-
ple is the SOAP submodule (wsclient_soap) that immediately imports operations
and data types from the WSDL file when the web service description is created (see
also section 4.3). Also the submodule for RESTful services (wsclient_rest) can
add REST-specific settings, e.g. the HTTP request method for an operation or a URL
fragment that should be added as operation URL.

WSDL parsing
SOAP web services are typically described with WSDL (see section 2.2) and the in-
formation is exposed at a well-known location along the service. It contains metadata
about what operations the service offers, how they can be used (e.g. parameter data
types) and where they can be accessed (endpoint information). So it seems reasonable
that users do not have to enter that information for the web service client module, but
read it automatically from those WSDL files that are available anyway.

For the implementation of such a WSDL parser we considered two options: either
parse the XML with the PHP SimpleXML extension12 or use the SOAPClient class of
the PHP SOAP extension that provides methods to retrieve information about operations
and data types. We decided to go with the latter approach, for the following reasons:

• No XML parsing effort. We do not have to care about the WSDL structure details
and how that is mapped to the web service client operation and data type concept.
That reduces the code size for this functionality tremendously and therefore makes
it less error-prone.

12PHP SimpleXML extension: http://php.net/manual/de/book.simplexml.php

http://php.net/manual/de/book.simplexml.php

CHAPTER 4. REALIZATION 56

• Compatibility. We use SOAPClient to invoke web services, so we also use it
to tell us what it actually can invoke. Incorrectly formatted WSDL files might
result in different operations when parsing them separately, which we can avoid
that way.

• WSDL versions. Although PHP SOAP only supports WSDL 1.1 at the moment,
we can expect that future releases will also support newer WSDL versions, when
they become popular. Thus we can ignore the rarely used WSDL 2.0 completely
for now and rely on the PHP SOAP interface that will be adapted to new standards.

SOAPClient has two methods that can be used:

• SoapClient::__getFunctions() : Returns a list of service operations with
their parameter types and result type. That operation details can be mapped to the
web service descriptions used in the wsclient module (i.e. the operation name,
parameter names and types, result type; see figure 4.1 for the targeted properties).
Unfortunately the metadata for one operation is concatenated in a string, which
has to be tokenized in order to extract all details separately.

• SoapClient::__getTypes() : Returns a list of complex data type structures
with their properties that are used in the service operations. As for the operations,
this information can be transfered to the data types in the wsclient web service
descriptions. Again, each type definition is concatenated in a string and must be
disassembled (not a difficult task as the pattern is simple).

Besides tokenizing the operation and data type string definitions we must also map
primitive data type names to the internally used data type names, e.g. “string” is called
“text” or “float” is “decimal” in the Entity API. The whole conversion is done by simple
functions that return suitable information arrays for the web service descriptions. With
the help of that functions we can provide a initializeMetadata() method in our
SOAP endpoint class that constructs service operations and data types in the web service
description. It can be used when a new SOAP service is created (e.g. in the UI) to
auto-populate the metadata or for changed service definitions to override the existing
metadata information.

All in all this approach works well in most cases, however there is one little short-
coming: lists in very complex nested data types cannot always be detected. We consider
this a minor drawback that will not affect most services; however it can be easily cor-
rected in the UI after a WSDL file was parsed.

Export
We elaborated in the analysis (section 4.1) that JSON is the preferred export format for
our web service descriptions. As for the user interface implementation we can reason

CHAPTER 4. REALIZATION 57

about where to realize the export/import functionality: in the web service client module
or might it be useful as generic solution in the Entity module? If we consider the use
case of exporting an entity it seems obvious that this is indeed a standard feature for
many entity providing modules. Therefore we developed import and export methods
for the standard entity controller that converts an entity object to/from JSON. Also two
API functions were added (entity_export() and entity_import()) that do the
transformations for any entity type. For exporting entity objects are first converted to
arrays and then JSON encoded, for importing the JSON string is converted back to an
array and then processed in the create method of the entity controller. Listing 4.10
shows an example of such a JSON encoded export string. The “token”, “statusKey” and
“rdf_mapping” properties refer to entity API specific details.

The export/import functionality can also be used from the UI, links for exporting
are available for each web service description. The JSON export is shown on the export
page and can be copied and pasted into the import form of another Drupal site. This sim-
ple mechanism allows sharing of web service descriptions between independent Drupal
sites.

Features export

The simple Entity API export focuses on single entities and does not take possible de-
pendencies to other web service descriptions into account, e.g. a web service description
may use a data type from another description in an operation. Obviously the web service
description will not work without its dependency – this is where the Features module13

is needed. Features bundles exportable items (e.g. entities), checks for their dependen-
cies, exports them and creates the source code for a module that contains the export
including dependencies. This “feature module” can be transfered to another Drupal
instance and upon activation the exported items are available there.

The Entity API module already has an integration with Features, but it lacks a fine
grained data type dependency resolution for web service descriptions. We can easily
add that by overriding the EntityDefaultFeaturesController class with our own
where we check for dependencies upon export. Features uses a piping mechanism for
the export items where dependencies can be added to that pipe when an item is pro-
cessed. We need to check for two kind of dependencies:

• Data types: Does a web service description use data types from other service
descriptions? If so, add that dependencies to the list of exported items.

• Module dependencies: What endpoint type is a web service description using
(e.g. REST or SOAP)? Add the module that provides that endpoint to the list

13Features module: http://drupal.org/project/features

http://drupal.org/project/features

CHAPTER 4. REALIZATION 58

of module dependencies (otherwise the service can not be used because of the
missing endpoint implementation).

With that advanced export capabilities in place we have accomplished a reliable
import/export functionality for web service descriptions.

$service = wsclient_service_load(’twitter_search’);
$export = $service ->export();
// Now follows the content of $export (JSON).
{
"settings" : [],
"operations" : { "search" : {

"label" : "Search",
"parameter" : { "q" : { "type" : "text", "label" : "
Search text" } },

"result" : { "type" : "wsclient_twitter_search_result",
"label" : "Search

result" }
}

},
"datatypes" : {
"result" : {
"label" : "Search result",
"property info" : { "results" : { "type" : "list\
u003ctweet\u003e",

"label" : "Tweet list" } }
},
"tweet" : {
"label" : "Tweet data",
"property info" : { "text" : { "type" : "text", "label"

: "Tweet text" } }
}

},
"name" : "twitter_search",
"label" : "Twitter Search",
"url" : "http:\/\/search.twitter.com\/search.json",
"type" : "rest",
"token" : "CZ4spciv-QUotnhY8ANkZbbHLtHMpLrjwbMINvukH7E",
"authentication" : null,
"statusKey" : "status",
"rdf_mapping" : []

}

Listing 4.10: Example JSON export of a web service description.

Chapter 5
Automatic translation use case

I have no dress except the one I wear every day. If you are going to be kind
enough to give me one, please let it be practical and dark so that I can put
it on afterwards to go to the laboratory.
– Marie Curie, instructions regarding a proposed gift of a wedding dress for
her marriage to Pierre in July 1895.

As a proof of concept and to bring the developments into practical use, a use case that
facilitates the power of the web service client module will be implemented. This chapter
will outline the details of an automatic translation workflow that is used to retrieve
English translation suggestions for a German taxonomy vocabulary in Drupal.

The goal is to invoke multiple translation web services to get a range of English
translations and to rank them with the help of a machine learning component. This
machine learning component is an external software entity that can be accessed via a
web service interface. It processes all translation suggestions and returns a rank per
translation to indicate the likeliness of being a correct and suitable translation. Finally
the translation with the best rank can be selected and stored in the Drupal vocabulary
translations. Figure 5.1 shows an overview of how an example term is translated and
ranked with the help of external web services.

5.1 Requirements
To carry out all parts of the workflow we need to fulfill some requirements. First, we
need to identify translation web services that can deliver suitable German to English
translations for our vocabulary. Second, we need to negotiate an interface to the ma-
chine learning component that is capable of exchanging German terms and their possi-
ble English translations.

59

CHAPTER 5. AUTOMATIC TRANSLATION USE CASE 60

Figure 5.1: Example term translation and the involved web service calls.

Translation web services
The German vocabulary targeted for translation contains terms that are nouns and typ-
ically one or two words long. After researching and investigating various translation
services that are free to use and publicly available, we could come up with four services
that fit to our use case requirements:

• Google dictionary1: Google provides an online dictionary that offers translations
between many languages including German to English. It returns multiple trans-
lation proposals for a term. There is no official web service interface, but there is
an unofficial way to access the service via HTTP/REST2.

• Yahoo Babel Fish3: Babel Fish is one of the oldest Internet translation services
and was purchased by Yahoo some years ago. It focuses mainly on translating
text or whole web sites and returns only a single result. However, it also works

1Google dictionary: http://www.google.com/dictionary
2On Google’s Unofficial Dictionary API: http://googlesystem.blogspot.com/2009/12/

on-googles-unofficial-dictionary-api.html
3Yahoo Babel Fish: http://babelfish.yahoo.com

http://www.google.com/dictionary
http://googlesystem.blogspot.com/2009/12/on-googles-unofficial-dictionary-api.html
http://googlesystem.blogspot.com/2009/12/on-googles-unofficial-dictionary-api.html
http://babelfish.yahoo.com

CHAPTER 5. AUTOMATIC TRANSLATION USE CASE 61

with single words and provides a decent output. Unfortunately there is no machine
readable API available that can be accessed as either SOAP or REST web service.

• dict.cc4: This service offers community driven translations, mostly from German
to English. Users of the site can contribute translations and verify other proposed
translations. The service returns multiple results in a dictionary style. As for
Yahoo Babel Fish there is no machine-readable web service interface available.

• MyMemory5: Another community powered online service that works with the
help of contributed user translations. Similar to Yahoo Babel Fish it is also spe-
cialized on translating whole sentences or texts, but also delivers at least one rea-
sonable result for single terms. Meanwhile MyMemory offers a SOAP and REST
web service API6, which was not available at the time of the implementation of
this use case.

As we see there are a couple of services that lack a proper web service interface, so
we need to extract the result data with the help of a wrapper.

Web data extraction with dapper.net
For accessing the translation services that do not have a web service API we need a con-
version tool that allows data extraction from the result pages that contain the translated
terms. While web data extraction is an interesting and well-established research field
itself with many different approaches [LRNdST02] [ZNW+06], we simply make use of
dapper.net7, an online tool for web scraping. It allows users to create so called Dapps
that are configurations for specific web sites where input and output variables can be
selected from the targeted web sites. In our case the input variables are the German
term and the translation direction (German to English), and the output variable is the
set of translation results displayed on the site. After that setup the Dapp is ready and is
exposed as REST web service on dapper.net. Now our Drupal site (e.g. the web service
client module) is able to use the Dapp’s web service as gateway to retrieve the transla-
tion results from the translation services. There are different formats available for those
results, e.g. XML or JSON. Figure 5.2 illustrates the application flow around dapper.net
for the dict.cc Dapp example.

We have successfully configured and tested Dapps for dict.cc, MyMemory and Ya-
hoo Babel Fish. The data extraction worked very well in most test cases, however not
always perfect as some data items got lost on edge cases. The translation Dapps are

4dict.cc: http://www.dict.cc
5MyMemory: http://mymemory.translated.net
6MyMemory API: http://mymemory.translated.net/doc/spec.php
7Dapper.net: http://open.dapper.net

http://www.dict.cc
http://mymemory.translated.net
http://mymemory.translated.net/doc/spec.php
http://open.dapper.net

CHAPTER 5. AUTOMATIC TRANSLATION USE CASE 62

dapper.net

dict.cc online translation service

Dapp for dict.cc

Drupal

REST web
service

Web service
client

2: HTTP
POST request

1: GET
translation

5: JSON
response

3: HTML
document
response

4: Extract
data from

HTML

Figure 5.2: Dict.cc translation service wrapped with the dapper.net data extraction tool.

available online at dapper.net8. The process of creating a Dapp is a simple task and can
be quickly accomplished by selecting the target site, specifying form parameters and
choosing result sections to be extracted and returned.

Machine learning component
The evaluation of the collected translations is done by an external machine learning
component that is accessed via a web service interface, too (SOAP). It is implemented
based on the WEKA9 algorithms and was setup and configured by Alexander Seewald
for our needs. I will not go into the details of machine learning here, as this is clearly out

8Dapps used to wrap translation services:
http://open.dapper.net/user-dapps.php?userId=51695

9WEKA: http://www.cs.waikato.ac.nz/ml/weka/

http://open.dapper.net/user-dapps.php?userId=51695
http://www.cs.waikato.ac.nz/ml/weka/

CHAPTER 5. AUTOMATIC TRANSLATION USE CASE 63

of scope for this thesis (a paper about this application is to be released). Important for us
is only the interface how translations are sent to the component and how the translation
scores are received. We provide the following information when calling the machine
learning web service:

• The original German term, the term description, the term synonyms and the parent
terms in the Drupal taxonomy.

• The set of translation items which include the web service origins (which ser-
vices returned that particular translation) and the position/rank within the service
results (e.g. a term on the first place might indicate a more appropriate transla-
tion). Additionally back translations to German are appended that might help in
determining the score of a translation.

The data for a translation is wrapped in complex SOAP data structures and then
transmitted with the help of the web service client module. The returned score is saved
with the translation suggestion and after evaluating all translations they can be sorted
according to the score. In the end the results are presented in the Drupal taxonomy user
interface where one can select the translation that should finally be applied as correct
one.

5.2 Workflow building
For the realization of the whole translation workflow we realized a small custom Drupal
module that uses the web service client module and the Drupal API. At the time of
building this workflow the WSClient user interface was not ready yet, so the web service
descriptions were created in code. Here is a summary of the steps that were necessary
to execute the automatic translation:

1. Service definitions. Before working with the translation services and the ranking
service we had to specify the operations and the data types that are involved.
We also implemented small test cases that were used to check that each service
correctly works.

2. Translation storage. Received translations are stored in a separate vocabulary and
a term reference field is added that points back to the original German term in the
source vocabulary. Fields for all the properties of a translation (e.g. web service
origin(s) or score) have to be prepared for storing all related information.

CHAPTER 5. AUTOMATIC TRANSLATION USE CASE 64

3. Process queue. To be able to translate vocabularies with many terms, we made
use of the Drupal queue system10. It is designed to process an arbitrary amount of
items in batches so that no PHP execution timeouts are reached and it guarantees
that every item (every term in this case) is processed. The scheduling of those
batches is done with the Drupal cron system11 which can execute certain tasks
periodically.

4. Translation collection. A worker function invokes all translation services for a
single German term, saves the results and calls the services again to back-translate
each suggestion, which are also saved. The back-translations are used to gain
additional information about the term and to further determine the correctness
of a translation. All translations are cleaned up (white spaces are stripped off,
conversion to all lower case words) and translations that contain special characters
are filtered out.

5. Translation ranking. The German target term and its corresponding set of trans-
lations are then passed to the WEKA web service one by one. WEKA in turn
computes a score for this translation. The score is added to the saved translated
term. This is repeated for all translation suggestions.

6. WEKA feedback. After all terms have been processed and the translations are
available in order of their ranking, a human administrator can choose the correct
translation. The human feedback can also be shared with the WEKA machine
learning component which learns from correct and incorrect translations. WEKA
benefits from this online learning to improve future translation rankings.

5.3 Results
Starting from a German vocabulary with more than 1.800 terms the four translation
services were invoked several times per term. Not only the English translations were
retrieved, but also back translations to German were collected. All this resulted in more
than 40.000 translations including the back translations. The scheduling of translation
batches took 24 hours until all terms were processed and the web services invocations
were completed.

The suggested translations were inspected by a human for quality assurance, also to
select the finally correct translation and move it to the English target vocabulary. The
methodology proved to be reliable, we found that in 90% of all cases the correct trans-
lation had the best score and was ranked first place by the machine learning component.

10Drupal queue documentation:
http://api.drupal.org/api/drupal/modules--system--system.queue.inc/group/queue

11Drupal cron jobs: http://drupal.org/cron

 http://api.drupal.org/api/drupal/modules--system--system.queue.inc/group/queue
http://drupal.org/cron

CHAPTER 5. AUTOMATIC TRANSLATION USE CASE 65

Figure 5.3: Translation tree for the German term “Gesundheit” with back translations at
the second level. The terms are ordered according to the WEKA scores.

Terms with a special meaning (e.g. abbreviations or proper names) were also translated,
but the results were ignored as the term itself could be used untranslated in English
as well in most cases. Figure 5.3 shows an example of the translations that were re-
ceived (this screenshot was taken from the Taxonomy Manger12 user interface we used
to examine the terms and to administer them).

12Taxonomy Manager: http://drupal.org/project/taxonomy_manager

http://drupal.org/project/taxonomy_manager

Chapter 6
Related work

One is not born, but rather becomes, a woman.
– Simone de Beauvoir

This chapter will establish connections to other projects and research areas that are
interesting for our work. This thesis is about consuming web services and combining
them in workflows, from a client-side point of view. I will briefly introduce the opposite
point of view (the server side), i.e. how web services can be provided within Drupal.
Furthermore I will discuss other web service composition approaches.

6.1 Web service providers in Drupal
Providing web services in Drupal means to answer incoming requests not with the stan-
dard HTML page generation, but to process the special web service requests and to
respond appropriately. Drupal offers the flexibility for modules to take part in many as-
pects of handling a request so that a web service providing module can be implemented
without modifying any Drupal core components. Therefore the development of such a
module can be completely encapsulated and does not influence any other independent
module or functionality. I will describe two relevant modules that aim to provide generic
web services.

Services module
The services module1 has a long development history and supports a broad range of
web service types (e.g. SOAP, XML-RPC, REST etc.) and formats (e.g. JSON, XML,
etc.). It is a stable and matured implementation that offers an endpoint system, where

1Services module: http://drupal.org/project/services

66

http://drupal.org/project/services

CHAPTER 6. RELATED WORK 67

resources can be exposed at certain URL paths. It also offers integration for authen-
tication systems (e.g. OAuth) and provides hooks for other modules that want to add
resource types or endpoint types. Services has developed towards the REST principles
(see also chapter 2.2), but does not strictly enforce them (this is necessary to incorpo-
rate the different web service types, e.g. SOAP services do not really fit to the resource
oriented architecture). Standard resources in Drupal (e.g. nodes or users) are described
and are available in various representations out of the box. The module also comes with
an UI where endpoints can be configured and resources can be assigned to them.

RESTful Web Services module
A relatively new project is the RESTful Web Services module2 that has been created by
myself and Wolfgang Ziegler. It emerged from the need of using the Entity API module
for providing any Drupal entity as web service resource. The Services module has cur-
rently no generic entity support, and integrating that functionality did not seem feasible
as we also had some other important design goals in mind. The differences to Services
are that entities are automatically exposed as resources, there is no endpoint concept as
resources are always live on a default URL path, REST principles are strictly enforced
(no support for message-oriented service types like SOAP, XML-RPC etc.) and authen-
tication is ignored and must be achieved on another abstraction level. Representation
formatters can make use of the resource metadata information, so that also semanti-
cally important connections can be incorporated into the representation (e.g. relevant
for RDF formatters or to convert id properties to REST conforming URL references).
More information about this module is outlined in a blog post by Wolfgang Ziegler3.

6.2 WS-BPEL composition projects
WS-BPEL (see also chapter 2.3) is a description standard for the orchestration of mostly
classical SOAP-based web services. For building these compositions several IDE plug-
ins and graphical tools are available, for example the Eclipse BPEL Designer Project4,
the ActiveVOS platform5 or the Oracle BPEL Process Manager6 [Lou08]. They assist
developers by providing graphical elements that represent BPEL language items which
can be linked together. This is very similar to the workflow building we do with the
web service client and Rules module. In both cases users (developers) construct mul-

2RESTful Web Services module: http://drupal.org/project/restws
3“Restful web services in Drupal 7” blog post: http://wolfgangziegler.net/node/14984
4Eclipse BPEL Designer Project: http://www.eclipse.org/bpel/
5ActiveVOS: http://www.activevos.com/
6Oracle BPEL Process Manager: http://www.oracle.com/technetwork/middleware/bpel/

overview

http://drupal.org/project/restws
http://wolfgangziegler.net/node/14984
http://www.eclipse.org/bpel/
http://www.activevos.com/
http://www.oracle.com/technetwork/middleware/bpel/overview
http://www.oracle.com/technetwork/middleware/bpel/overview

CHAPTER 6. RELATED WORK 68

Figure 6.1: Screenshot of the Eclipse BPEL Designer project.

tiple web service invocations that serve a more complicated use case. The differences
are that while BPEL processes can be expressed with more language features and are
therefore more complex, a workflow with Rules is more limited and simpler, but also
integrates deeper with the Drupal environment (e.g. other arbitrary Rules actions can
be used in the workflow, besides web service calls). A consequence is that those Rules
workflows are tied to a Drupal execution environment, while BPEL processes can be ex-
ported to XML representations that can be executed in any BPEL implementing server
application. Figure 6.1 shows an example of the graphical composing screen of the
Eclipse BPEL Designer project.

Another difference is that BPEL specifically targets business processes and SOAP
web services with strict service contracts; our work is more lightweight and also ad-
dresses RESTful web services. This is important for integration with modern web 2.0

CHAPTER 6. RELATED WORK 69

applications and adds flexibility when incorporating web services to typical workflows
in a content management system like Drupal (see also chapter 5 for our use case appli-
cation).

6.3 Web services in other content management systems
Besides Drupal there are also other content management systems that integrate with web
services in certain ways.

• Plone: the Web Services API for Plone7 is a package that provides an XML-RPC
interface for the Plone CMS. It acts as web service provider and exposes Plone
resources and also comes with a client library to access Plone via this interface.
Documentation can be found online8.

• Typo3: there is a Webservices extension9 that aims to provide a library to easily
expose and consume web services. The project is in an experimental state and
does not seem to be active.

• Alfresco10: This Java-based enterprise CMS offers two separate APIs for remote
access, so called “Web scripts”11 (a RESTful API relying on simple HTTP re-
quests) and a Web Services API12 (providing SOAP services with WSDL files).
Both provide a very detailed and also complex implementation that allows many
configuration options and specify fine grained features for remote interaction. Al-
fresco also implements the Content Management Interoperability Services (CMIS)
standard which is maintained by the OASIS [EIOO10] and which defines a do-
main model as well as bindings so that applications can work universally with a
CMS.

Researching this topic revealed that most other systems focus on providing their
own resources via a remotely accessible interface, while building a web service client
abstraction layer is implemented rarely. This indicates that our work is hard to compare
to those other systems, as our goals and use cases are quite the opposite to the usual web
service providing approaches. It also means that our work is experimental and unique;

7wsapi4plone: https://weblion.psu.edu/trac/weblion/wiki/WebServicesApiPlone
8wsapi4plone documentation: http://packages.python.org/wsapi4plone.core/
9Typo3 Webservices extension: http://forge.typo3.org/projects/extension-extbase_

webservices
10Alfresco: http://www.alfresco.com/
11Alfresco Web Scripts: http://wiki.alfresco.com/wiki/Web_Scripts
12Alfresco Web Services API: http://wiki.alfresco.com/wiki/Alfresco_Content_

Management_Web_Services

https://weblion.psu.edu/trac/weblion/wiki/WebServicesApiPlone
http://packages.python.org/wsapi4plone.core/
http://forge.typo3.org/projects/extension-extbase_webservices
http://forge.typo3.org/projects/extension-extbase_webservices
http://www.alfresco.com/
http://wiki.alfresco.com/wiki/Web_Scripts
http://wiki.alfresco.com/wiki/Alfresco_Content_Management_Web_Services
http://wiki.alfresco.com/wiki/Alfresco_Content_Management_Web_Services

CHAPTER 6. RELATED WORK 70

it will have to prove useful in the future and it will have to justify the architectural
considerations and the implementation design.

Chapter 7
Conclusion and Outlook

I think I am justified — though where so many hours have been spent in
convincing myself that I am right, is there not some reason to fear I may be
wrong?
– Jane Austen

In this last chapter I will recapitulate the work described in this thesis and will point
out plans for the future. First we will revisit the goals and objectives from chapter 3.

7.1 Evaluation
To measure the overall success of our work I will compare each objective with the result
and outcome from our realization.

Web service client module. We have successfully created a web service client module
for Drupal and published it on drupal.org1. It fulfills the requirement of being a
flexible solution for different web service types and comes with support for SOAP
and RESTful web services (including REST-RPC hybrids). We managed to de-
sign the module not only for good usability in the user interface, but also created
a good developer experience for programmers with a clean API. We embraced
the work from Wolfgang Ziegler [Zie10] and implemented a well-founded web
service abstraction layer that is extensible and easy to use. The Entity API mod-
ule2 helped to solve basic configuration storage needs and simplified the code, so
that the module implementation could concentrate on the core features that the
module accomplishes.

1Web service client module: http://drupal.org/project/wsclient
2Entity API module: http://drupal.org/project/entity

71

http://drupal.org/project/wsclient
http://drupal.org/project/entity

CHAPTER 7. CONCLUSION AND OUTLOOK 72

Web service composition with Rules. We elaborated on the usefulness of a workflow
engine for web service composition and integrated the web service client module
with the Rules module3. A web service invocation has been realized as action
in the Rules Event-Condition-Action system. This integration enables workflow
builders to use all the existing events, conditions and actions to combine them
with web service calls. We showed that multiple web services can be used in a
workflow and we completed Rules with data type actions that solved the prob-
lem of transferring and re-assigning data structures between service calls. The
language elements of Rules (e.g. conditions, loops, rule sets etc.) provide a pow-
erful tool set to orchestrate web services. We admit that the features of Rules are
limited compared to composition languages like WS-BPEL, but Rules has the ad-
vantage of a deep integration to the Drupal platform and easily satisfies workflow
needs in a CMS.

An automatic translation use case. The practical usefulness of the web service client
module was verified with the task of collecting different translations from web
services and to combine the results with another web service. The web service
client module proved to be robust, easy to use and worked out flawlessly when
implementing the workflow around the use case. As a by-product we investigated
web data extraction techniques to turn web applications into accessible web ser-
vices (see chapter 5 for details).

Web service integration without programming effort. The web service client mod-
ule provides a user interface that allows site administrators to specify web service
descriptions. Web service operations and complex data types can be defined in
the UI, so that no code has to be written in order to setup a web service connec-
tion. The other part of invoking web services is accomplished with the Rules user
interface, where web service operations can be added as actions that are executed
when the rule is triggered. Of course site administrators still have to be familiar
with web services and how they can be specified, but no programming effort is
needed to build web service client descriptions.

Automatic WSDL parsing. We managed to retrieve metadata of SOAP services from
their WSDL files with the help of the PHP SOAP extension. This is a huge relief
for site administrators that now do not have to manually enter all details of the
service. Operations and data types of a service are extracted automatically upon
creation of the service description.

Sharing of exportable web service descriptions. We realized a comprehensive import/-
export solution that allows transferring of web service descriptions to other Drupal

3Rules module: http://drupal.org/project/rules

http://drupal.org/project/rules

CHAPTER 7. CONCLUSION AND OUTLOOK 73

installations. The Entity API module was of great help again, which we extended
to provide JSON formatted exports for any entity type. For complex exports of
web service descriptions that have dependencies to others, we introduced an inte-
gration for the Features module4. It is capable of resolving the dependencies and
bundles the exports as Drupal module.

7.2 Future work
Although our objectives have been satisfied, some small details in the implementation
remain open. There is still some work to do to complete all goals of the web service
client project.

• RESTful web services have not been implemented and tested completely, because
we dealt mostly with GET operations that retrieve data from a service. To have
full CRUD support in the web service client REST module we will have to realize
create, update and delete operations as well, which has not been done yet. How-
ever, the implementation of PUT, POST and DELETE requests should be an easy
task and straight forward, as the REST module does not require big changes and
is prepared for such additions.

• The user interface does not take details for different service types into account,
i.e. it only handles the generic type-independent web service description. Ideally
service type providing modules like the REST module would extend the user
interface to also include their settings (e.g. the operation URL for a RESTful
service). These settings of course work already in the developer API and only a
mapping to elements in the UI pages is missing.

• Sometimes it may be convenient to quickly test a web service operation from the
UI, which is currently only possible by creating a test Rules configuration and
executing it manually. A direct integration of such an execution into the web
service operation UI would be less cumbersome, but has not been realized yet.

• Extracting SOAP service metadata from WSDL files does not work for edge cases
with very complex data types (nested lists) at the moment. The fact that the PHP
SOAP extension lacks a perfect detection does not affect most services; however,
implementing a custom XML parser could solve that problem, but would mean
quite some programming effort.

• A minor issue is that if a SOAP service WSDL file changes, then the internal web
service description must be discarded and must be newly created in order to do

4Features module: http://drupal.org/project/features

http://drupal.org/project/features

CHAPTER 7. CONCLUSION AND OUTLOOK 74

the automatic metadata extraction from the WSDL again in the UI. This could
easily be solved by providing a button to re-parse the WSDL, but has never been
a priority during the development of the module.

• Authorization and authentication has only been implemented in the form of HTTP
basic authentication. It would be interesting to also work with trending concepts
such as OAuth [HLRH11] which is very popular among RESTful web services.

7.3 Summary
All together we managed to release a web service module for Drupal 7 that has a solid
foundation and that incorporates modern design patterns. It is based on the important
concept of entities and the Entity API that will shape the future of Drupal. We lever-
aged the entity system for the storage of web service descriptions and we were able to
completely avoid writing any database related code besides the initial database schema
definition. Furthermore we improved the Entity module in a way so that it is not only
useful for the web service client module but potentially also for any third-party module
that works with entities. Common basic features like an administration UI or import/-
export functionality were developed to be generically usable for any entity.

A web service description is the internal abstraction model that was chosen during
the implementation of this project. All web service types can be considered as a set
operations and a set of data types that are used in the operations. Parameters and return
variables form the signature of an operation. We showed that this concept can be suc-
cessfully applied to SOAP and RESTful web service types. Web service descriptions
are extensible and the particular service type can add service specific configurations.

Web service composition was explored as research topic and was applied to a real
world scenario in Drupal. The Rules module integration of the web service client mod-
ule is a great opportunity to embed web service invocations in workflows. We have
provided a flexible system for multiple web service calls that can be configured com-
pletely on Drupal administration pages. Using web services and integrating them into
Drupal is now a much simpler task and can be accomplished without writing code.

The original work of Wolfgang Ziegler [Zie10] on web services has been embraced
and has been developed to a mature solution. The relevance of the web service client
module has not only been outlined theoretically, but has also been proven on the transla-
tion workflow use case and several other practical applications. As the implementation
is licensed as free and open source software and is published on drupal.org, the Drupal
community and others can take part in any further development and can use the module
for their own needs. We look forward to future adoptions and how our approach will
influence general web service integration in Drupal.

Appendix A
Acronyms

AJAX Asynchronous JavaScript + XML

API Application Programming Interface

CCK Content Construction Kit

CMIS Content Management Interoperability Services

CMS Content Management System

CRUD Create Read Update Delete

EMML Enterprise Mashup Markup Language

FTP File Transfer Protocol

GNU GNU’s Not Unix

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

IDE Integrated Development Environment

IT Information Technology

JSON JavaScript Object Notation

OASIS Organization for the Advancement of Structured Information Standards

PDO PHP Data Objects

RDF Resource Description Framework

75

APPENDIX A. ACRONYMS 76

REST Representational State Transfer

RFC Request for Comments

ROA Resource Oriented Architecture

RPC Remote Procedure Call

RSS Really Simple Syndication

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

UDDI Universal Description, Discovery and Integration

UI User Interface

URI Uniform Resource Identifier

URL Uniform Resource Locator

W3C World Wide Web Consortium

WEKA Waikato Environment for Knowledge Analysis

WADL Web Application Description Language

WSDL Web Services Description Language

WS-BPEL Web Services Business Process Execution Language

WS-CDL Web Services Choreography Description Language

WWW World Wide Web

XHTML eXtensible HyperText Markup Language

XML eXtensible Markup Language

XSD XML Schema Definition

Appendix B
Index

List of Figures

2.1 SOA roles and their relationship. 8
2.2 Web Service standards and their relationship in SOA. 9
2.3 REST triangle with examples for resources, operations and content types. . 11
2.4 Example business activities to illustrate the difference between orchestra-

tion and choreography. 14
2.5 A BPEL process example with structured activities that contain basic activ-

ities and manage the behavior of the process. 16
2.6 Solutions to compose RESTful web services in WS-BPEL either with WSDL

2.0 or BPEL for REST [Pau09]. 17
2.7 Mashup architecture with external Web APIs and their connection to server

and client side. 19
2.8 Drupal’s technology stack [VW07] . 22
2.9 An Event-Condition-Action rule that reacts when a user updates a node to

notify the node author [Z+10a] . 24
2.10 Module architecture of Rules Web. “A remote proxy may provide new en-

tities, metadata as well as events, conditions and actions to the system.”
[Zie10] . 26

77

3.1 Service invocations in the automatic translation use case. 29

4.1 Information structure of a web service description. 33
4.2 Web service composition in Rules with actions for invocation and data

structure creation. 39
4.3 Web service client modules and their dependencies to other modules. 41
4.4 Class diagram of the web service client module. 42
4.5 Method call hierarchy on a web service operation invocation. 47
4.6 Rules configuration example with two web service actions and the use of

data selectors to assign variables. 50
4.7 Screenshot of a rule configuration overview page with two web service actions. 51
4.8 Screenshot of the web service client overview UI. 53
4.9 Screenshot of the edit form of a web service description. 54

5.1 Example term translation and the involved web service calls. 60
5.2 Dict.cc translation service wrapped with the dapper.net data extraction tool. 62
5.3 Translation tree for the German term “Gesundheit” with back translations

at the second level. The terms are ordered according to the WEKA scores. . 65

6.1 Screenshot of the Eclipse BPEL Designer project. 68

List of Tables

2.1 Mapping CRUD operations to HTTP methods [BB08]. 11

Listings

4.1 Example web service description represented in XML. 33
4.2 Invoking a web service with PHP SOAP. 35

78

LISTINGS 79

4.3 Invoking a RESTful service with the HTTP client module. 35
4.4 Loading a web service description and executing a web service operation. 38
4.5 Implementation of hook_schema() in the wsclient module. 43
4.6 Implementation of hook_entity_info() in the wsclient module. . . . 44
4.7 Entity CRUD operations on a web service description object. 45
4.8 A rule in code composing two web services by using the Rules devel-

oper API. 52
4.9 Submit callback for web service descriptions that leverages the Entity

API. 53
4.10 Example JSON export of a web service description. 58

Appendix C
Bibliography

[AAM06] Asif Akram, Rob Allan, and David Meredith. Best practices in web ser-
vice style, data binding and validation for use in data-centric scientific
applications. August 2006.

[All09] Open Mashup Alliance. OMA EMML Specification 1.0, 2009. http:
//www.openmashup.org/omadocs/v1.0/index.html.

[BB08] Robert Battle and Edward Benson. Bridging the semantic web and web
2.0 with representational state transfer (REST). Web Semant., 6(1):61–
69, 2008.

[BLFM98] T. Berners-Lee, R. Fielding, and L. Masinter. Rfc 2396: Uniform re-
source identifiers (URI): Generic syntax, aug 1998. http://tools.
ietf.org/html/rfc2396.

[Bru09] Alexander Bruckner. Tool supported workflow integration of restful web
services. Master’s thesis, Vienna Univserity of Technology, 2009.

[Cro06] D. Crockford. The application/json media type for javascript object no-
tation (JSON), jul 2006. http://tools.ietf.org/html/rfc4627.

[dc09] Drupal documentation community. Drupal programming from an object-
oriented perspective. http://drupal.org/node/547518, 2009.

[Del07] Daniel B. Delgado. Inspiring teamwork & communication with a con-
tent management system. In SIGUCCS ’07: Proceedings of the 35th
annual ACM SIGUCCS fall conference, pages 55–59, New York, NY,
USA, 2007. ACM.

80

http://www.openmashup.org/omadocs/v1.0/index.html
http://www.openmashup.org/omadocs/v1.0/index.html
http://tools.ietf.org/html/rfc2396
http://tools.ietf.org/html/rfc2396
http://tools.ietf.org/html/rfc4627
http://drupal.org/node/547518

APPENDIX C. BIBLIOGRAPHY 81

[DS05] Schahram Dustdar and Wolfgang Schreiner. A survey on web services
composition. Int. J. Web Grid Serv., 1(1):1–30, 2005.

[EIOO10] David Choy Emc, Al Brown Ibm, Ryan Mcveigh Oracle, and Flo-
rian Muller Opentext. Oasis content management interoperability ser-
vices (cmis) tc, 2010. http://docs.oasis-open.org/cmis/CMIS/
v1.0/cd07/cmis-spec-v1.0.html.

[FGM+99] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee. Hypertext transfer protocol – HTTP/1.1, 1999. http:
//tools.ietf.org/html/rfc2616.

[Fie00] Roy Thomas Fielding. Architectural styles and the design of network-
based software architectures. PhD thesis, 2000. Chair-Taylor, Richard
N.

[FT00] Roy T. Fielding and Richard N. Taylor. Principled design of the mod-
ern web architecture. In ICSE ’00: Proceedings of the 22nd interna-
tional conference on Software engineering, pages 407–416, New York,
NY, USA, 2000. ACM.

[GN02] M. Grossniklaus and M. C. Norrie. Information concepts for content
management. pages 150–159, 2002.

[Gre07] Joe Gregorio. Do we need WADL? Blogpost, 2007. http://
bitworking.org/news/193/Do-we-need-WADL.

[HLRH11] E. Hammer-Lahav, D. Recordon, and D. Hardt. The oauth 2.0 autho-
rization protocol. Technical report, http://tools.ietf.org/html/
draft-ietf-oauth-v2-12, 2011.

[Jaz07] Mehdi Jazayeri. Some trends in web application development. In FOSE
’07: 2007 Future of Software Engineering, pages 199–213, Washington,
DC, USA, 2007. IEEE Computer Society.

[JE+07] Diane Jordan, John Evdemon, et al. Web services business process ex-
ecution language version 2.0, OASIS standard, 2007. http://docs.
oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html.

[LHSL07] Xuanzhe Liu, Yi Hui, Wei Sun, and Haiqi Liang. Towards service com-
position based on mashup. pages 332–339, jul. 2007.

[LLSL08] Qing Li, Rynson W. H. Lau, Timothy K. Shih, and Frederick W. B. Li.
Technology supports for distributed and collaborative learning over the
internet. ACM Trans. Internet Technol., 8(2):1–24, 2008.

http://docs.oasis-open.org/cmis/CMIS/v1.0/cd07/cmis-spec-v1.0.html
http://docs.oasis-open.org/cmis/CMIS/v1.0/cd07/cmis-spec-v1.0.html
http://tools.ietf.org/html/rfc2616
http://tools.ietf.org/html/rfc2616
http://bitworking.org/news/193/Do-we-need-WADL
http://bitworking.org/news/193/Do-we-need-WADL
http://tools.ietf.org/html/draft-ietf-oauth-v2-12
http://tools.ietf.org/html/draft-ietf-oauth-v2-12
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

APPENDIX C. BIBLIOGRAPHY 82

[Lou08] Panagiotis Louridas. Orchestrating web services with bpel. IEEE Soft-
ware, 25:85–87, 2008.

[LRNdST02] Alberto H. F. Laender, Berthier A. Ribeiro-Neto, Altigran S. da Silva, and
Juliana S. Teixeira. A brief survey of web data extraction tools. SIGMOD
Rec., 31(2):84–93, June 2002.

[Mer09] Duane Merrill. Mashups: The new breed of web app. IBM De-
veloperWorks, 2009. http://www.ibm.com/developerworks/xml/
library/x-mashups.html.

[N+10] Károly Négyesi et al. Field API tutorial, 2010. http://drupal.org/
node/707832.

[NPRI09] Nurzhan Nurseitov, Michael Paulson, Randall Reynolds, and Clemente
Izurieta. Comparison of json and xml data interchange formats: A case
study. In CAINE, pages 157–162, 2009.

[O’R05] Tim O’Reilly. What is web 2.0?: Design patterns and business models
for the next generation of software, September 2005. http://oreilly.
com/web2/archive/what-is-web-20.html.

[Ove07] Hagen Overdick. The resource-oriented architecture. Services, IEEE
Congress on, 0:340–347, 2007.

[Pap08] M. P. Papazoglou. Web services: principles and technology. Pearson
Prentice Hall, 2008.

[Pau08] Cesare Pautasso. Bpel for rest. In BPM ’08: Proceedings of the 6th
International Conference on Business Process Management, pages 278–
293, Berlin, Heidelberg, 2008. Springer-Verlag.

[Pau09] Cesare Pautasso. Restful web service composition with bpel for rest.
Data & Knowledge Engineering, 68(9):851–866, 2009. Sixth Interna-
tional Conference on Business Process Management (BPM 2008) - Five
selected and extended papers.

[PTDL07] MP Papazoglou, P Traverso, S Dustdar, and F Leymann. Service-
oriented computing: State of the art and research challenges. Computer,
40(11):38–+, nov. 2007.

[PZL08] Cesare Pautasso, Olaf Zimmermann, and Frank Leymann. Restful web
services vs. "big"’ web services: making the right architectural decision.
In WWW ’08: Proceeding of the 17th international conference on World
Wide Web, pages 805–814, New York, NY, USA, 2008. ACM.

http://www.ibm.com/developerworks/xml/library/x-mashups.html
http://www.ibm.com/developerworks/xml/library/x-mashups.html
http://drupal.org/node/707832
http://drupal.org/node/707832
http://oreilly.com/web2/archive/what-is-web-20.html
http://oreilly.com/web2/archive/what-is-web-20.html

APPENDIX C. BIBLIOGRAPHY 83

[RR07] Leonard Richardson and Sam Ruby. Restful web services. O’Reilly,
2007.

[SHM08] Derek T. Sanders, . J. A. Hamilton, Jr., and Richard A. MacDonald. Sup-
porting a service-oriented architecture. In SpringSim ’08: Proceedings of
the 2008 Spring simulation multiconference, pages 325–334, San Diego,
CA, USA, 2008. Society for Computer Simulation International.

[Sim05] Doug L. Simpson. Content for one: developing a personal content man-
agement system. In SIGUCCS ’05: Proceedings of the 33rd annual ACM
SIGUCCS fall conference, pages 338–342, New York, NY, USA, 2005.
ACM.

[Sta06] Michael Stal. Using architectural patterns and blueprints for service-
oriented architecture. IEEE Software, 23:54–61, 2006.

[tBBG07] M. ter Beek, A. Bucchiarone, and S. Gnesi. Web service composition
approaches: From industrial standards to formal methods. pages 15–15,
may. 2007.

[TP02] Aphrodite Tsalgatidou and Thomi Pilioura. An overview of standards and
related technology in web services. Distrib. Parallel Databases, 12(2-
3):135–162, 2002.

[UG98] Tommie Usdin and Tony Graham. Xml: not a silver bullet, but a great
pipe wrench. StandardView, 6(3):125–132, 1998.

[VW07] John VanDyk and Matt Westgate. Pro Drupal Development. Apress,
Berkely, CA, USA, 2007.

[W3C04] Web Services Architecture Working Group W3C. Web services glossary,
2004. http://www.w3.org/TR/ws-gloss/.

[Wil10] Erik Wilde. Representational state transfer (REST). Web Architecture
lecture slides, UC Berkeley School of Information, 2010. http://dret.
net/lectures/web-fall10/rest.

[Z+10a] Wolfgang Ziegler et al. Drupal rules module documentation, 2010.
http://drupal.org/node/298476.

[Z+10b] Wolfgang Ziegler et al. Rules developer documentation, 2010. http:
//drupal.org/node/878718.

[Zie10] Wolfgang Ziegler. Enhanced reacitve rules for drupal. Master’s thesis,
Vienna University of Technology, 2010. https://more.zites.net/
thesis.

http://www.w3.org/TR/ws-gloss/
http://dret.net/lectures/web-fall10/rest
http://dret.net/lectures/web-fall10/rest
http://drupal.org/node/298476
http://drupal.org/node/878718
http://drupal.org/node/878718
https://more.zites.net/thesis
https://more.zites.net/thesis

APPENDIX C. BIBLIOGRAPHY 84

[ZNW+06] Jun Zhu, Zaiqing Nie, Ji-Rong Wen, Bo Zhang, and Wei-Ying Ma. Si-
multaneous record detection and attribute labeling in web data extraction.
In Proceedings of the 12th ACM SIGKDD international conference on
Knowledge discovery and data mining, KDD ’06, pages 494–503, New
York, NY, USA, 2006. ACM.

	Contents
	1 Introduction
	1.1 Motivation and background
	Drupal
	Web services
	Workflows and Rules
	Free and open source software

	1.2 Problem statement and goal
	1.3 Outline

	2 Foundations
	2.1 Common protocols and standards
	2.2 Web Services
	Service Oriented Architecture
	WS* Web Services
	Resource Oriented Architecture and REST
	RESTful Web Services

	2.3 Web Service composition
	Orchestration vs. choreography
	WS-BPEL
	BPEL for REST
	Mashups

	2.4 Web Content Management Systems
	2.5 Drupal
	Drupal core architecture
	Entities and Fields
	Rules
	Rules Web

	3 Objectives
	3.1 Web service client module
	3.2 Web service composition with Rules
	3.3 An automatic translation use case
	3.4 Web service integration without programming effort
	3.5 Automatic WSDL parsing
	3.6 Sharing of exportable web service descriptions

	4 Realization
	4.1 Analysis
	Web service model
	SOAP service layer
	RESTful service layer
	Complex web service data types
	Import/Export format
	Developer API
	Web service composition

	4.2 Architecture
	Web Service descriptions as entities
	Endpoints
	Invoking web service operations

	4.3 Implementation
	Rules integration and service composition
	Administration user interface
	WSDL parsing
	Export

	5 Automatic translation use case
	5.1 Requirements
	Translation web services
	Web data extraction with dapper.net
	Machine learning component

	5.2 Workflow building
	5.3 Results

	6 Related work
	6.1 Web service providers in Drupal
	Services module
	RESTful Web Services module

	6.2 WS-BPEL composition projects
	6.3 Web services in other content management systems

	7 Conclusion and Outlook
	7.1 Evaluation
	7.2 Future work
	7.3 Summary

	A Acronyms
	B Index
	List of Figures
	List of Tables
	Listings
	C Bibliography

